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Abstract. Pasting diagrams form an important special class of higher categories.
In 1991, Kapranov and Voevodsky announced that any d-polytope in Rd, when equipped
with a generic frame of Rd, naturally defines a d-dimensional pasting diagram. Our
main result is a counterexample to this claim.

After translating this category-theoretic statement into a purely convex-geometric one,
we were led to the study of globular structures and higher cellular strings on poly-
topes. Specifically, the absence of cellular loops is a necessary condition for the claim.
We strongly disprove it by constructing polytopes for which every frame leads to a
cellular loop.

An important infinite family of framed polytopes without cellular loops is defined by
the canonically framed cyclic simplices. These happen to be exceptional since we show
that, as the dimension of a canonically framed random simplex grows, the probability
that it has a cellular loop tends to 1.

We conclude this work relating globular structures on simplices to oriented flag ma-
troids, and use this connection to prove a universality theorem showing how compli-
cated the moduli space of frames can be.

Keywords: Framed polytopes, n-categories, pasting diagrams, cellular strings, globu-
lar structures, random polytopes, oriented flag matroids, Mnëv’s universality theorem

1 Introduction

Higher categories offer a powerful framework for systematizing complex hierarchies.
Polytopes were first introduced into higher category theory to organize coherence rela-
tions. Kapranov and Voevodsky significantly expanded the connection between convex
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geometry and higher category theory announcing several intriguing results in [7], in-
cluding the following insightful idea. Consider a convex d-polytope P ⊆ Rd and a
generic ordered basis B of Rd, which we refer to as a frame. Using the frame we de-
fine, for each face F, two distinct subsets of its k-faces: its k-source sk(F) and k-target
tk(F). Kapranov and Voevodsky conjectured [7, Thm. 2.3] that the data consisting of all
sources and targets, referred to as the globular structure of (P, B), defines a d-dimensional
pasting diagram, a special and important type of d-dimensional categories. Using ideas of
Steiner [10], we show in the full version of this article that this claim holds if and only if
the framed polytope has no cellular loops, a notion we now define. A cellular k-string in
a framed polytope is a sequence F1, . . . , Fℓ of faces such that two consecutive faces Fi and
Fi+1 share a k-face G with tk(Fi) ∩ sk(Fi+1) = G. We say it is a cellular loop if and Fi = Fj
for some i ̸= j.

The first contribution we discuss in this paper are counterexamples to [7, Thm. 2.3].
More precisely, in Section 3 we provide examples showing the following.

Theorem 1.1. Starting in dimension 4 there exist framed polytopes with cellular loops.

We also considered whether the following weaker version of their claim could be
true: For any polytope there is a frame making it into a pasting diagram. However, this
weaker version also fails since we provide in Section 4 a construction establishing the
following.

Theorem 1.2. Starting in dimension 4 there exist polytopes for which all frames lead to cellular
loops.

An important infinite family of framed polytopes, which was studied by Kapranov–
Voevodsky, is given by the canonically framed cyclic simplices (C(d), {e1, . . . , ed}), where
{e1, . . . , ed} is the canonical frame of Rd and C(d) is the convex closure of d + 1 distinct
points in the moment curve t 7→ (t, t2, . . . , td). In an insightful observation [7, Thm.
2.5], they announced that (C(d), {ek}) has no cellular loops and recover Street’s free
d-category on the d-simplex, a fundamental object in higher category theory [11]. We
were able to verify this claim after replacing the canonical frame by {e1,−e2, e3,−e4, . . .}.
These framed polytopes are rare and special in the following probabilistic sense.

A Gaussian d-simplex is the convex hull of d + 1 independent random points in Rd,
each chosen according to a d-dimensional standard normal distribution. In Section 6 we
prove the following.

Theorem 1.3. The probability that a canonically framed Gaussian d-simplex has a cellular loop
tends to 1 as d tends to ∞.

We next turn our attention to the moduli of frames of a simplex ∆d under the equiv-
alence relation induced by globular structures. Our aim is to quantify the complexity
of the realization space of a globular structure on ∆d, that is, the set of all frames of



Framed polytopes and higher categories 3

∆d inducing it. Using a celebrated result of N. E. Mnëv [8], in Section 8 we show the
following.

Theorem 1.4. For every open primary basic semi-algebraic set S defined over Z there is a globular
structure on some simplex ∆d whose realization space is stably equivalent to S.

A key step in the proof of this result is the following theorem–presented in Section 7–
which we consider noteworthy in its own right.

Theorem 1.5. Globular structures of framed simplices are in bijection with uniform acyclic
realizable full flag chirotopes.

For reasons of scope and extension, we do not discuss our formalization of the
Kapranov–Voevodsky idea, nor the applications within higher category theory of this
connection with convex geometry, simply mentioning that the resulting d-categories are
gaunt, an important type of higher categories that fully-faithfully embed into any model
of (∞, d)-categories. Our focus here will remain primarily with polytopes. For fur-
ther details, including proofs and discussions of the aforementioned topics, we invite
the interested reader to consult the full version of this article, which will become avail-
able soon. We believe that, beyond our initial motivation, the results presented herein
hold intrinsic value from a combinatorial-geometric standpoint. Indeed, some important
research topics in combinatorial polytope theory, such as the Baues problem, were orig-
inally motivated by questions in algebraic topology and category theory, with our work
extending these connections to higher category theory.

2 Definitions and preliminaries

A polytope P is a subset of Rd for some d ∈ N obtained as the convex hull of a finite
set of points. A face F of P is a subset of P maximizing some linear functional. Its
dimension is that of its affine span. A d-dimensional polytope is called a d-polytope and a
k-dimensional face is called a k-face. We denote the set of k-faces of P by Lk(P) and the
set of all faces by L(P). As usual, if P is a d-polytope, its (d − 1)-faces are called facets,
and the outer-pointing normal vector of a facet F is denoted nP

F .
A frame B is an ordered basis (v1, . . . , vd) of Rd. The canonical frame (e1, . . . , ed) consists

of the standard basis vectors. The system of projections of a frame is the collection {πk}k∈N

with

πk : Rd → Vk
def
= Span (v1, . . . , vk) ; πk(vi) =

{
vi if i ≤ k,
0 if i > k.

A frame is said to be P-admissible if for any k-face F of P the restriction πk : Lin F → Vk
is a linear isomorphism. We remark that the property of being P-admissible is stable
under small perturbations.
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A framed polytope is a pair (P, B) consisting of a polytope P and a P-admissible frame
B. We will typically omit the frame from the notation. We remark that B is πk(P)-
admissible, so πk(P) is canonically framed for any k ∈ N.

v1 v2

v3

v1

v2

v1

P = π3(P) π2(P) π1(P)

v1

v2

Figure 1: A globular structure on a 3-cube P given by a frame (v1, v2, v3) of R3. The
first row depicts P and its projections π2(P) and π1(P). The faces in s0(P), s1(P) and
s2(P), and their projections, are in red, while the faces in t0(P), t1(P) and t2(P), and
their projections, are in blue. The second row shows the 0- and 1-sources and targets
of the 2-faces, projected onto the ⟨v1, v2⟩ plane. The 0-sources and targets of the 1-faces
are computed similarly.

Let (P, B) be a framed polytope. Its k-boundary ∂(k)P is the subset of k-faces of P
consisting of the faces F such that πk+1(F) is in the boundary of the polytope πk+1(P).
The k-source sk(P) (resp. k-target tk(P)) of a framed polytope (P, {vk}) is the subset of
∂(k)P containing one such F if〈

nπk+1(P)
πk+1(F) , vk+1

〉
< 0 (resp. > 0).

See an example in Figure 1. Similar definitions apply to all faces of P using the induced
frame.

The data of all sources and targets of faces of P is called the globular structure on P
induced by B. Two P-admissible frames are said to be P-equivalent if they induce the
same globular structure on P.

Lemma 2.1. If a frame {v′1, v′2, . . .} is obtained from a P-admissible frame {v1, v2, . . .} via a
positive lower triangular transformation, meaning that there exist λpq ∈ R for p > q and
λi ∈ R+ such that v′q = λqvq + ∑p>q λpqvp , then these frames are P-equivalent.

Corollary 2.2. Every P-admissible frame is P-equivalent to an orthonormal frame.
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3 Cellular loops

Let (P, B) be a framed polytope. A cellular k-string in P is a sequence F1, . . . , Fm of faces
of P satisfying tk(Fi) ∩ sk(Fi+1) ̸= ∅ for every i ∈ {1, . . . , m − 1}. We remark that this
intersection is precisely a single k-face. Figure 2 depicts two examples of cellular strings.
Note that cellular 0-strings starting at s0(P) and ending at t0(P) are precisely the cellular
strings defined in [1].

v1

v2

Figure 2: A cellular 1-string and a cellular 0-string on the example of Figure 1

A cellular k-loop is a cellular k-string F1, . . . , Fm with Fi = Fj for some i ̸= j.

3.1 A cellular 1-loop in the 5-simplex

We describe a 5-simplex P5 for which the canonical frame is admissible and induces a
1-loop. Consider the 6 points p1, . . . , p6 in R5 whose coordinates are the columns of
matrix 

−3 −2 −1 1 2 3
−1 1 0 0 1 −1
−1 1 0 0 −1 1
0 0 1 1 0 0
1 1 1 0 0 0

 .

Since these are affinely independent, their convex hull P5 is a 5-simplex, and one can
easily see that the canonical frame of R5 is P5-admissible. This framed polytope contains
the following cellular 1-loop of 2-faces:

[p1p2p3], [p2p3p6], [p2p6p4], [p4p5p6], [p1p4p5], [p1p3p5], [p1p2p3]. (3.1)

Consulting Figure 3, it is straightforward to check that for each of the triangles ti, the
edge ti ∩ ti+1 lies in the 1-target t1(ti) of ti and in the 1-source s1(ti+1) of ti+1.

Remark 3.1. All 2-faces involved in (3.1) are also faces of the 4-dimensional polytope
P4 = π4(P5), which is a cyclic 4-polytope with 5 vertices. Therefore, the 4-polytope P4
together with the canonical frame also has a cellular 1-loop. This example is minimal
in dimension since we can prove that all framed n-polytopes for n < 4 have no cellular
loops. (We prove that there cannot be 0-loops nor (n − 2)-loops.)
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p1

p2

p3 p4

p5

p6
e1

e2

Figure 3: A cellular 1-loop in P5 formed by 2-faces. It represents the image of the
vertices of P5 and some of its edges under the projection π2 : R5 → R2.

3.2 A cellular 2-loop in the 6-simplex

We now present a cellular 2-loop on a framed 6-simplex. It is a relative of the so-called
mother of all examples [5, Sec. 7.1]. In contrast with our previous example, the projections
of the simplices involved in the loop do not overlap and all the vertices are preserved
under the projection.

Consider the 7 points q0, q1, . . . , q6 in R6 whose coordinates are given by the columns
of the matrix Q and the frame B of R6 given by the columns v1, . . . , v6 of the matrix V
below

Q =



0 10 0 0 7 2 3
0 0 10 0 3 7 2
0 0 0 10 2 3 7
1 1 1 0 1 0 0
0 0 0 1 1 0 1
0 0 1 0 0 1 0

 , V =



−1 2 1 0 0 0
1 4 1 0 0 0
−1 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1

 .

The columns of Q are affinely independent, and therefore form the vertex set of a sim-
plex Q6. The frame B is Q6-admissible, as it can be easily checked by computer, and the
resulting framed 6-simplex (Q6, B) has the following 2-loop of 4-faces:

[q0q1q4q5], [q0q1q3q4], [q0q3q4q6], [q0q2q3q6], [q0q2q5q6], [q0q1q2q5], [q0q1q4q5]. (3.2)

Although checking that this is indeed a cellular loop can be done using a computer, it is
instructive to understand the geometry of this example. Please refer to Figure 4 as we
proceed to present it.

Since Span(v1, v2, v3) = Span(e1, e2, e3) and Span(v4, v5, v6) = Span(e4, e5, e6), the pro-
jection π3 is given by forgetting the last three coordinates. The 2-loop (3.2) is apparent
on π3(Q6), depicted on the left of our figure. The vector v3 that determines the 2-sources
and 2-targets goes in the direction from q0 to the center of the equilateral triangles there.

As the points q1, . . . , q6 are very close to being coplanar, it is somehow easier to
understand the loop in the 2-dimensional picture on the right. Here, q0 has to be thought
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q5

q3

q2

q6

q0

q1

q4

v3

q0
q1

q2

q3

q4

q5

q6

Figure 4: A cellular 2-loop on Q6. The convex hull of π3(Q6) is depicted on the left.
On the right we see π2(Q6) and the edges more relevant in the loop (note that they are
not the same as in the convex hull).

as being behind the plane spanned by the other points, and v3 is perpendicular to this
plane.

The loop consists of the six tetrahedra arising as the cone over q0 of each of the shaded
triangles in the picture in the right. Topologically, they form a “pinched” solid torus
where the interior circle has been collapsed to a point. For each tetrahedron, the facets
pointing “downwards” towards q0 are in the source, and those pointing “upwards” away
from q0 are in the target. For example, for the tetrahedron [q0, q1, q4, q5], the source is
the triangle [q0, q1, q5], and the target is formed by the triangles [q1, q4, q5], [q0, q1, q4],
and [q0, q4, q5]. Similarly, for the tetrahedron [q0, q1, q3, q4], the source are the triangles
[q0, q1, q4] and [q0, q1, q3], and the target are the triangles [q0, q3, q4] and [q1, q3, q4]. The
other tetrahedra behave analogously.

To check the loop, notice that the triangle [q0, q1, q4] is in the target of [q0, q1, q4, q5]
and in the source of [q0, q1, q3, q4]. The triangle [q0, q3, q4] is in the target of [q0, q1, q3, q4]
and in the source of [q0, q3, q4, q6]. And so on.

Remark 3.2. It is not hard to prove that if a face or a vertex figure of a polytope P has
a frame inducing a loop, then so does P. Combining our counterexamples with these
observations we see that every simple or simplicial polytope of dimension ≥ 6 admits a
frame inducing a loop.
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4 Loop inevitability

The goal of this section is to construct polytopes for which every admissible frame in-
duces a cellular loop. The construction is too technical and involved to fit in here, but
we will give some indications on the key steps of the proof.

Our main idea is to transform our polytopes via an operation called flattening that
enlarges the space of loop-inducing frames. And then combine several reflected copies
of a flattened polytope, via an operation called squashing, to cover the full space of
admissible frames.

Let P be a polytope and B a frame inducing a loop on P. Then there is an open
neighborhood of B in the space of frames that contains P-equivalent frames to B. The
flattening operation edits P so that B still induces a loop, but makes the set of equivalent
frames become arbitrarily large.

Lemma 4.1. Let P be a framed polytope in Rd with orthonormal frame B = {v1, . . . , vd}. For

any ε
def
= (ε1, . . . , εd) ∈ Rd, let Φε : vi 7→ εivi be the map that scales the vi coordinate by εi.

For every 0 < δ < 1 there is a positive ε ∈ Rd
>0 such that if B′ = {v′1, . . . , v′d} is an

orthonormal frame of Rd with
〈
vi , ṽ′i

〉
> δ for all 1 ≤ i ≤ d, where ṽ′i is the projection of v′i

to Vi = Span(v1, . . . , vi) along Span(v′i+1, . . . , v′d) rescaled so that it is a unit vector1, then the
frames B and B′ are Φε(P)-equivalent.

Figure 5 represents a regular hexagon P, for which the canonical basis (v1, v2) and the
basis (v1, v′2 := (1, 1)) induce distinct globular structures. However, for ε := (1, 1

4) ∈ R2

both bases are Φε(P)-equivalent.

v1

v2
v′2

Figure 5: A regular hexagon P for which the bases (v1, v2) and (v1, v′2) are not equiva-
lent, and a flattened version Φε(P) for which they are. The set of vectors w for which
(v1, w) is P-equivalent to (v1, v2) is depicted with a blue cone, and the set of those that
are Φε(P)-equivalent is depicted by a larger red cone.

The observation now is that, if we take ε conveniently, then every frame B will induce
a loop in some reflection of Φε(P) by the coordinate hyperplanes. The idea is to take
a copy of each possible reflection of Φε(P) to construct the desired polytope P̃. This
does not work directly, because we need the faces of the reflections of Φε(P) involved

1The fact that this projection is well defined follows inductively from the condition
〈
vi , ṽ′i

〉
> δ.
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in the loops to be also faces of the convex hull of all these reflected copies. Thus, one
has to be careful on where and how to place the reflected copies. In our proof we do
so by introducing a new operation on polytopes that we call squashing, which is closely
related to connected sums (see, for example, [9]). And then squashing on top of faces of a
barycentric subdivision of a simplex.

Lemma 4.2. Let P ⊂ Rd be a framed d-polytope with a cellular k-loop for some k ≤ d − 2. If
all the faces in this loop are faces of faces in td−1(P), then there is a d-polytope P̃ such that every
P̃-admissible frame induces a k-loop on P̃.

We conclude by noting that the framed polytope P4 defined in Remark 3.1 together
with the loop (3.1) satisfy the condition of this lemma, from which we conclude the
following.

Theorem 4.3. There is a 4-polytope for which every admissible frame induces a cellular loop.

5 Canonically framed cyclic simplices

We now turn to an infinite family of framed polytopes with no loops. Consider the
moment curve R → Rd given by vt = (t, t2, . . . , td). A cyclic simplex C(d) is the convex
hull of d + 1 distinct points in the moment curve.

A polytope P ⊂ Rd is said to be canonically framed if it is considered with the canonical
frame {e1, . . . , ed} which is assumed P-admissible.

It was announced by Kapranov and Voevodsky [7, Thm. 2.5] that the canonically
framed cyclic simplices recover Street’s pasting diagram structure on standard sim-
plices [11]. We were able to verify this claim after replacing the canonical frame with
{e1,−e2, e3,−e4, . . .}.

We can extend the absence of cellular loops to all canonically framed cyclic polytopes.
A cyclic polytope C(n, d) is the convex hull of n distinct points in the image of the the
moment curve in Rd, and we have the following.

Theorem 5.1. All canonically framed cyclic polytopes have no cellular loops.

6 Canonically framed Gaussian simplices

We now measure how special the absence of cellular loops is on cyclic simplices com-
pared to random embeddings. A Gaussian d-simplex is the convex hull of d + 1 indepen-
dent random points in Rd, each chosen according to a d-dimensional standard normal
distribution.

Theorem 6.1. For every k ≥ 1, the probability that the canonically framed Gaussian d-simplex
has a k-loop tends to 1 as d tends to ∞.
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Our proof uses very few hypothesis on the distribution, which could be further re-
laxed. Mainly that it is supported on Rd and that the vertices are independently sam-
pled. Therefore, for most usual distributions of random simplices the same kind of result
should hold.

We obtain similar results if instead of fixing the frame and choosing the simplex, we
fix the simplex and chose the frame. In view of Corollary 2.2, a reasonable approach is
to consider a random orthonormal frame chosen with respect to the Haar measure. Let
the standard d-simplex be the convex hull of the canonical basis of Rd+1.

Theorem 6.2. For every k ≥ 1, the probability that a uniform random orthonormal frame induces
a k-loop on the standard d-simplex tends to 1 as d tends to ∞.

7 Framed simplices and oriented matroids

A chirotope is a non-zero alternating map χ : {1, . . . , n}d → {+,−, 0} satisfying the chiro-
tope axioms [2, Def. 3.5.3]. We will consider those that are realizable, meaning that they are
associated to a vector configuration, and hence omit the general combinatorial definition.
We refer to [2] for a comprehensive reference on the topic. The chirotope associated to a
vector configuration V = (v1, . . . , vn) ∈ Rd×n is the map

χV : {1, . . . , n}d → {+,−, 0}
(i1, . . . , id) 7→ sign(det(vi1 , . . . , vid)).

A realizable chirotope is called acyclic if all the vectors of the configuration lie in a
common half-space; and uniform if χ(i1, . . . , id) ̸= 0 whenever i1, . . . , id are pairwise
distinct.

A realizable chirotope depends on a frame for the ground vector space, as an orien-
tation reversing change of basis results in a global sign change for the chirotope. An
oriented matroid can be defined as an equivalence class ±χ = {χ,−χ} of chirotopes up
to global reorientation [2, Prop. 3.5.2 and Thm. 3.5.5], where −χ denotes the chirotope
obtained from χ by reversing all the signs. Despite this subtle difference, the two terms
chirotope and oriented matroid are often used interchangeably in the literature.

When we restrict to framed simplices (∆d, B), the relation between globular structures
and chirotopes is quite satisfying as the next statement shows.

Lemma 7.1. Let (∆d, B) be a framed simplex with vertex set P = {p0, . . . , pd}. The globu-
lar structure on ∆d induced by B determines and is determined by the chirotopes of the point
configurations πk(P) = (πk(p0), . . . , πk(pd)) ∈ Rk×(d+1) for all 0 ≤ k ≤ d.

The core of this correspondence lies in the fact that the orientation of a facet F of a
simplex S in a codimension 1 projection can be deduced from the orientation of S and
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knowing whether F belongs to the source or the target of S. We can therefore compute
the chirotope of πk(∆d) from the globular structure and the chirotope of πk+1(∆d); and
conversely, the k-sources and k-targets can be found by comparing the chirotopes of
πk(∆d) and πk+1(∆d).

Flag matroids were introduced in [4], and also admit an oriented version. A flag
chirotope2 is defined as a sequence (χ1, . . . , χs) of chirotopes related by strong maps (also
called quotients), see [6, Example above Thm. D] and [3, Def. 4.1], and also [2, Def. 3.5.3,
Thms 3.5.5 and 3.6.2, and Def. 7.7.2] for more details on the definition and the relation
with ordinary oriented matroids.

A realizable full flag chirotope is a sequence of chirotopes (χ0, . . . , χd), where χk is the
chirotope of the vector configuration {πk(e1), . . . , πk(ed)}, {e1, . . . , ed} is the canonical
frame of Rd, and πk : Rd → Vk is the associated system of projections of another frame B
of Rd (see [4, Sec 1.7.5]). We will say that a flag chirotope (χ0, . . . , χd) is uniform (resp.
acyclic) if χk is uniform (resp. acyclic) for 0 ≤ k ≤ d.

Theorem 7.2. Globular structures of framed simplices are in bijection with uniform acyclic
realizable full flag chirotopes.

8 Universality

We now study the moduli space of frames under the equivalence relation defined by
globular structures. The realization space of a globular structure on a polytope P induced
by a frame B is the set of P-admissible frames that are P-equivalent to B. Our main
result in this section is that ∆d-equivalence classes of ∆d-admissible frames are universal
in the sense of [8]. To explain this statement we introduce the following notions. A
primary basic semi-algebraic set is a subset of Rd defined by integer polynomial equations
and strict inequalities. Two semi-algebraic sets S, S′ are called stably equivalent if they lie
in the same equivalence class generated by stable projections and rational equivalence.
Here, a projection π : S → S′ is called stable if its fibers are relative interiors of non-
empty polyhedra of the same dimension defined by polynomial functions on S′ (see [9,
Section 2.5] for details, and [12] for the constant dimension constraint).

Theorem 8.1. For every open primary basic semi-algebraic set S defined over Z there is a globular
structure on some ∆d whose realization space is stably equivalent to S.

2In the literature, they are usually called oriented flag matroids. However, we think that the name flag
chirotopes is more precise, in view of the (subtle) difference between the classical definitions.
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