
NOTES ON DEFORMATION QUANTISATION

ALEXEI LATYNTSEV AND GUILLAUME LAPLANTE-ANFOSSI

Abstract: Notes on deformation quantisation, formality, etc. Based on lectures and a culled larger set
of notes.
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1. Feynman diagrams and formality

1.1. Disks. Let T be an n-dimensional TQFT valued in symmetric monoidal category C, i.e. a sym-
metric monoidal functor

T : Cobn Ñ C.

Let us now restrict to the symmetric monoidal subcategory En of Cobn whose objects rks “ \Sn´1

arek-tuples of disjoint unit spheres, andwritingDn for the unit disk, the toplogical space ofmorphisms
rk1s Ñ rk2s correspond to inclusions of subdisks

\k1D
n ãÑ \k2D

n.

the complement of which is viewed as a cobordism; e.g. a map r5s Ñ r3s is

Composition in this category is induced by composing cobordisms.

Proposition 1.1.1. The forgetful functor

F : En Ñ FinSet˚

has the following properties:

‚ for every injection rk1s Ñ rk2s there is a preferred (i.e. cocartesian) morphism pEnqrk1s Ñ pEnqrk2s;

‚ the space of maps

Mapsf p\k1D
n,\k2D

n
q »

ś

Mapsf p\f´1piqDn,Dnq (1)

inducing a given map of sets f : rk1s Ñ rk2s is equivalent to the product of the spaces of maps lifting
its fibres f : f´1piq Ñ tiu.

Proof. The preferred morphisms are the identity maps on the relevant components, the factorisation
isomorphism (1) follows from the definition. l

A category with the above properties is called an operad.1 The elements of pEnq1 are called the colours
of the operad. We can make new operads using categories of cobordisms or disks endowed with extra
structures. We write

Enpkq “ HomEnprks, r1sq.

1See [Lu] for the precise definition.
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Proposition 1.1.2. The functor
T : En Ñ C

satisfies the following:

Corollary 1.1.3. Any TQFT T induces a unique En-algebra structure on TpSn´1q.

1.2. Feynman diagram operad.

1.2.1. We will now introduce the operad GraphspRnq of Feynman diagrams in Rn. It is valued in
Z-graded vector spaces.

A good reference is [LV]. Warning: in the literature these are called admissable rather than Feynman
graphs.

1.2.2. A preFeynman diagram is an oriented graph on coloured vertices ˝, ‚ with a total ordering on
the ˝’s and edges.

We grade the above, where each ˝ contributes degree n and each edge contributes degree n ´ 1; in
what follows geometrically this will be induced by ˝’s moving around in Rn and spheres around each
edge, with the ‚’s fixed:

This forms a Z-graded vector space D̂ which has a differential given by signed2 sums of contractions
of edges

dΓ “
ÿ

e

˘Γ{e

where we sum over all non-loop edges e touching a ‚ and which are not dead ends

The diagramsDpnq with n many ‚’s is a differential graded algebra structure by taking ordered union
of edges and ˝’s. Finally, this has a cooperad structure where the composition

Dpnq Ñ
à

r,ni

pDpn1q b ¨ ¨ ¨ b Dpnrqq b Dprq

2If n is even, the parity is the ordering on e. Otherwise, it is the maximal ordering of the source and target of e if the
source is less than the target in the ordering (otherwise apply ´1).
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sends Γ to the sum of Γ1 b ¨ ¨ ¨ b Γr b Γ, where Γi Ď Γ are appropriate subgraphs and Γ is given
by shrinking each Γi to a ‚; see [LV, §7.1] for a definition. In particular, the dual D̂_ has an operad
structure.

1.2.3. The differential graded complex of Feynman diagrams is the quotient

D “ D̂{I

by the subcomplex I generated by:

‚ Signs and orderings. Multiplying a graph by p´1qn if you reverse an edge or transpose the or-
dering on the ˝’s, and by p´1qn`1 if you transpose the ordering on the edges.

‚ Disallowed graphs. Graphs with loops, double edges, ˝’s with valence ď 2 or not in a connected
component with a ‚.

One can then check

Proposition 1.2.4. [LV]D forms a cooperad in Z-graded differential graded vector spaces.

Loosely speaking, a Feynman graph

x1 x2

x3

is given by starting with ‚’s and drawing a graph without loops or double edges. The ˝’s are where
the topology of the graph changes. Indeed, choosing an orientation on the edges and ordering on the
edges and ˝’s defines an element ofD.

1.3. Formality.

1.3.1. In next section, we show

Theorem 1.3.2. Let n ě 2. Then the spaces

Enpkq “ DiskkpDn
q

with its element id P Enp1q and the structures

m : pEnpk1q ˆ ¨ ¨ ¨ ˆ Enpkrqq ˆ Enprq Ñ Enpk1 ` ¨ ¨ ¨ ` krq

is formal.

Theorem 1.3.3. If n ě 2, there is a unique quasiisomorphism of differential graded algebras with cooperad
structure

Φ : Dpkq
„
Ñ pH r

pEnpkqq, 0q
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killing any graph Γ with a ˝ vertex, and sending the ijth chord graph to the pullback of the volume class along
the map Enpkq Ñ Sn´1 given by comparing the two centres of the ijth disks

ÞÑ

1.3.4. What does “formal" mean? An element A in a dg category C with t-structure is called formal if
there is an isomorphism

For : A
„
Ñ H r

pAq

to its cohomology‘τďnτěnA. An elementAwith extra structure, e.g. an associative product, is called
formal if there is an isomorphism as above preserving this structure.

A space X is called formal if its dg algebra of chains pC r
pXq,Yq is formal. For instance, if X is

a smooth projective complex manifold, then Hodge theory says this dg algebra is isomorphic to the
de Rham complex, which Hodge theory says is formal, as each cohomology class is represented by a
unique harmonic differential form:

pΩ
r,h
X ,^q Ñ pΩ

r
X ,^q Ñ pC r

pXq,Yq

Note that a chain complex of vector spaces is always formal. Chain complexes in general abelian cate-
gories are not.
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2. A proof of formality of Ed

The main diagram is

Dpnq ΩPApFMdpnqq

H r
pEdpnqq C r

pEdpnqq

I
„

≀ ≀

„

where all maps are isomorphisms of operads, and the vertical isomorphisms are more obvious; we will
do them first. Formality is then induced by the bottom composition.

2.1. FM and C r
pEdq.

2.1.1. IfA is a finite set, we define

FMdpAq “ InjpA,Rd
q{Rd

¸ Rą0.

For each pair of elements a, b, c P A we have a map

πa,b : FMdpAq Ñ Sd´1, ηa,b,c : FMpAq Ñ r0,8s

defined by taking the unit direction vector of a ´ b and the |a ´ b|{|a ´ c|, respectively. We define
FMdpAq as the closure of

i : FMdpAq Ñ pSd´1
qp|A|

2 q ˆ r0,8sp
|A|

3 q.

2.1.2. The collection FMdpnq forms a topological operad.

2.1.3. Remark. Compare thiswith theDeligne-Mumford operad, where you take the quotient by holo-
morphic automorphisms of the disk; this is related to associahedra.

Theorem2.1.4. There is a quasiisomorphism of cooperadsΩPApFMdpnqq » C r
pEdpnqq given by a one-step

zig-zag.

Proof. It is given by the “Boardmann-Vogt W-construction" of operads, and there are maps of operads
which are homotopy equivalences:

WEd

FMd Ed

„„

Points inWEd are trees decorated by points of Ed, and the map to FMd is given by shrinking each disk
to a point, and the tree structure is given by the infinitesimal structure on the points, and the map to
Ed is given by forgetting the tree structure. l
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2.2. D and H r
pEdq.

2.2.1. Remark. The cooperad structure on D̂pnq does not commute with the differential; this is why
we need to take the quotient by the ideal I , since the cooperad structure onDpnq does commute with
the differential.

Theorem 2.2.2. There is a quasiisomorphism of cooperadsDpnq » H r
pFMdpnqq.

Proof. This basically follows from the classical fact that

H r
pFMdpAqq “ SymCtga,b : a, b P Au

L

pgabgbc ` gbcgca ` gcagab, g
2
ab, gab ´ p´1q

dgbaq.

The map fromDpnq is given by sending the a, bth chord to ga,b. l

Note that dpΓq “ gabgbc ` gbcgca ` gcagab, where Γ is the graph on three ‚’s connected to a single
˝ each by a single edge.

2.3. The map I : Dpnq
„
Ñ ΩPApFMdpnqq.

2.3.1. To begin, note that the we have the following d ´ 1-form on Rd:

κd

ÿ

p´1q
itidt1 ^ ¨ ¨ ¨ ^ pdti ^ ¨ ¨ ¨ ^ dtd

whose exterior derivative is the volume form. Define vol P Ωd´1pSn´1q to be its restriction to Sd´1.

2.3.2. If Γ P D̂pnq is a graph with n‚, n˝ many dots of type ˝ and ‚ dots and withE many edges, we
consider

FMdpn‚ ` n˝q

pSd´1qE FMdpn‚q

oblvπΓ

where we write πΓ “
ś

e:iÑjπi,j : FMdpV q Ñ pSd´1qE . We define

IpΓq “ oblv˚π
˚
Γp

ś

e:iÑjrs
voli,jq

Γ

oblv
ÞÑ

where the vertices of the first kind are drawn in bold. Likewise,
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Γ

πΓ
Ð [
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