Practice class 5 - Shadows of polytopes

Aspects of linear algebra in Guillaume's research, at the intersection of discrete geometry, homotopy theory and higher category theory.

Q1. In this question, we will consider d linear transformations with domains and codomains as indicated:

$$
\mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1} \rightarrow \mathbb{R}^{d-2} \rightarrow \cdots \rightarrow \mathbb{R} \rightarrow\{0\}
$$

where the j th arrow is given by the linear transformation

$$
P^{(j)}: \mathbb{R}^{j} \longrightarrow \mathbb{R}^{j-1}
$$

for $1 \leq j \leq d$ defined by

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{j-1} \\
x_{j}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{j-1}
\end{array}\right]
$$

For each of the following maps, compute its associated matrix, its mull-space, its column space, and verify the rank-nullity theorem.
(i) the three maps $P^{(4)}, P^{(3)}$, and $P^{(2)}$
(ii) the map $P^{(3)} \circ P^{(4)}$
(iii) the map $P^{(2)} \circ P^{(3)} \circ P^{(4)}$.
(iv) the maps $P^{(d)}$, for any natural number d.
(v) the maps $P_{j}:=P^{(j+1)} \circ \cdots \circ P^{(d-1)} \circ P^{(d)}$, for any $1 \leq j \leq d-1$.

Q2. Given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ in \mathbb{R}^{d}, their convex hull is the set

$$
\operatorname{Conv}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right):=\left\{\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{n} \mathbf{x}_{n} \mid \forall i, \alpha_{i} \geq 0 \text { and } \alpha_{1}+\cdots+\alpha_{n}=1\right\}
$$

A polytope is the convex hull of a finite set of points in \mathbb{R}^{d} for some d. Polygons (a triangle, a square, a pentagon,...) and polyhedra (a simplex, a cube, an octahedron,...) are examples of polytopes.
(a) Draw the standard 3-simplex

$$
\Delta^{3}:=\operatorname{Conv}\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \subset \mathbb{R}^{3} .
$$

(b) Compute the projections $P^{(3)}\left(\Delta^{3}\right) \subset \mathbb{R}^{2}$ and $\left(P^{(2)} \circ P^{(3)}\right)\left(\Delta^{3}\right) \subset \mathbb{R}$, and draw the resulting polytopes.

The d-dimensional cyclic polytope on n vertices is the convex hull $C(n, d)$ of the n points

$$
\mathbf{x}_{j}:=\left[\begin{array}{c}
(j-1) \\
(j-1)^{2} \\
(j-1)^{3} \\
\vdots \\
(j-1)^{d}
\end{array}\right] \in \mathbb{R}^{d}
$$

for $1 \leq j \leq n$.
(c) Draw the cyclic polytopes $C(3,2)$ and $C(4,2)$. Hint: stretch the x axis.
(d) Compute the projections $P^{(3)}(C(3,3))$ and $P^{(3]}(C(4,3))$, and draw the resulting polytopes. Hint: projecting respects linear combinations.
(e) What is going on here? Make a conjecture.
(f) Prove that conjecture.
(g) [Challenge] Draw the cyclic polytopes $C(3,3), C(4,3)$.

Q3. A hyperplane H in \mathbb{R}^{d} is the set of solutions to a single linear equation.
(a) For $d=1,2,3$, what are hyperplanes geometrically?

Let $P:=\operatorname{Conv}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \subset \mathbb{R}^{d}$ be a d-dimensional polytope, and consider the intersection of P with an hyperplane H. Either we have
(1) $H \cap P=\varnothing$,
(2) H cuts P into 2 parts,
(3) $H \cap P \neq \varnothing$, and all the points on $P \backslash H$ lie on the same side of H.

The intersection $H \cap P$ of P with an hyperplane H is called a facet of P if

- $H \cap P=\operatorname{Conv}(A)$ is the convex hull of a subset $A \subset\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$,
- $H \cap P$ satisfies condition (3) above, and
- the dimension of $H \cap P$ is one less than that of P.

Consider again the standard 3 -simplex Δ^{3} from Question 1. Its facets are all triangles.
(b) How many facets does Δ^{3} have?
(c) Is the following convex hull a facet of Δ^{3} ? Explain your answer.

$$
\operatorname{Conv}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right) \subset \mathbb{R}^{3}
$$

In our class, we have not formally defined dimension yet. However, in the examples of the standard simplex and of cyclic polytopes $C(n, d)$, the facets are exactly the convex hulls of d-element subsets satisfying (3) above.
More precisely, a facet of a cyclic polytope $C(n, d)$ is the convex hull $\operatorname{Conv}\left(\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{d}}\right)$ for a subset $I:=\left\{i_{1}, \ldots, i_{d}\right\} \subset\{1, \ldots, n\}$ such that all points \mathbf{x}_{j} for $j \notin I$ lie on the same side of the hyperplane

$$
H(I):=\left\{\alpha_{1} \mathbf{x}_{i_{1}}+\ldots \alpha_{d} \mathbf{x}_{i_{d}} \mid \forall j, \alpha_{j} \in \mathbb{R} \text { and } \alpha_{1}+\cdots \alpha_{d}=1\right\}
$$

A facet of a d-dimensional polytope $C(n, d)$ always has dimension $d-1$.
(d) Draw $C(4,3), C(4,2)$ and $C(4,1)$.
(e) Compute the hyperplanes $H(I)$ for the facets I of each of these three cyclic polytopes. You should obtain 4 equations of the form $a x+b y+c z=d$ for $C(4,3)$, 4 equations of the form $a x+b y=c$ for $C(4,2)$, and 2 equations of the form $a x=b$ for $C(4,1)$.

A facet I of $C(n, d)$ is an lower facet (resp. upper facet) if all the points \mathbf{x}_{j} for $j \notin I$ are above (resp. below) the hyperplane $H(I)$, with respect to the last (d th) coordinate. Let us denote by $\mathcal{U}(C(n, d))($ resp. $\mathcal{L}(C(n, d)))$ the set of upper (resp. lower) facets of $C(n, d)$.
(f) What are the upper and lower facets of $C(4,3), C(4,2)$ and $C(4,1)$? Draw them in different colors.
(g) What do you observe?
(h) Draw $P^{(3)}(\mathcal{U}(C(4,3)))$ and $P^{(3)}(\mathcal{L}(C(4,3)))$, as well as $P^{(2)}(\mathcal{U}(C(3,2)))$ and $P^{(2)}(\mathcal{L}(C(3,2)))$.
(i) What do you observe?

Q4. [Challenge] We will now be interested in the cyclic simplex $C(d+1, d)$. Any subset $I \subset$ $\{1, \ldots, d+1\}$ of cardinality $|I|=k+1$ defines, via the convex hull, a k-dimensional face $\operatorname{Conv}\left(\left\{x_{i}\right\}_{i \in I}\right)$ of $C(d+1, d)$. We define the k-source (resp. k-target) of $C(d+1, d)$ to be the set of k-faces F of $C(d+1, d)$ such that $P_{k+1}(F)$ belongs to $\mathcal{L}\left(P_{k+1}(C(d+1, d))\right.$) (resp. $\left.\mathcal{U}\left(P_{k+1}(C(d+1, d))\right)\right)$.
(i) Draw the k-source and k-target of $C(4,3)$, for all $k \geq 0$.

We say that a sequence F_{1}, \ldots, F_{ℓ} of faces of $C(d+1, d)$ is k-admissible if the k-target of F_{i} and the k-source of F_{i+1} have a k-face in common, for all $1 \leq i \leq \ell-1$. We say that $C(d+1, d)$ is loop-free if it does not admit any infinite k-admissible sequence, for any $k \geq 0$.
(ii) Show that $C(4,3)$ is loop-free. Hint: do a proof by exhaustion.

Q5. [Challenge] A tiling of \mathbb{R}^{2} a family \mathcal{F} of polygons such that
(a) $\bigcup_{F \in \mathcal{F}} F=\mathbb{R}^{2}$, and
(b) whenever two polygons $F, G \in \mathcal{F}$ intersect, their intersection $F \cap G$ is an edge of both.

Giving such a tiling, suppose moreover that for all polygons $F \in \mathcal{F}$, no edge of F is perpendicular to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. For each polygon $F \in \mathcal{F}$, the k-source and k-target of F for $k=0,1$ are defined in the same fashion as we did above for $C(n, 2)$. Show that \mathcal{F} is loop-free.

If you want to know more about the connections with contemporary research topics, you can look at the following research articles/books (there are many pictures!):

- R.Street, The algebra of oriented simplices.
- M. Kapranov \& V. Voevodsky, Pasting schemes and higher Bruhat orders.
- T. Dyckerhoff \& M. Kapranov, Higher Segal Spaces.

