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Practice class 5 – Shadows of polytopes

Aspects of linear algebra in Guillaume’s research, at the intersection of discrete geometry, homo-
topy theory and higher category theory.

Q1. In this question, we will consider d linear transformations with domains and codomains as
indicated:

Rd → Rd−1 → Rd−2 → · · · → R → {0},

where the jth arrow is given by the linear transformation

P (j) : Rj −→ Rj−1

for 1 ≤ j ≤ d defined by 
x1

x2
...

xj−1

xj

 7→


x1

x2
...

xj−1


For each of the following maps, compute its associated matrix, its mull-space, its column space,
and verify the rank-nullity theorem.

(i) the three maps P (4), P (3), and P (2)

(ii) the map P (3) ◦ P (4)

(iii) the map P (2) ◦ P (3) ◦ P (4).

(iv) the maps P (d), for any natural number d.

(v) the maps Pj := P (j+1) ◦ · · · ◦ P (d−1) ◦ P (d), for any 1 ≤ j ≤ d− 1.

Q2. Given n points x1, . . . ,xn in Rd, their convex hull is the set

Conv(x1, . . . ,xn) := {α1x1 + · · ·+ αnxn | ∀i , αi ≥ 0 and α1 + · · ·+ αn = 1}.

A polytope is the convex hull of a finite set of points in Rd for some d. Polygons (a triangle, a
square, a pentagon,. . . ) and polyhedra (a simplex, a cube, an octahedron,. . . ) are examples of
polytopes.

(a) Draw the standard 3-simplex

∆3 := Conv

00
0

 ,

10
0

 ,

01
0

 ,

00
1

 ⊂ R3.

(b) Compute the projections P (3)(∆3) ⊂ R2 and (P (2)◦P (3))(∆3) ⊂ R, and draw the resulting
polytopes.
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The d-dimensional cyclic polytope on n vertices is the convex hull C(n, d) of the n points

xj :=


(j − 1)
(j − 1)2

(j − 1)3

...
(j − 1)d

 ∈ Rd

for 1 ≤ j ≤ n.

(c) Draw the cyclic polytopes C(3, 2) and C(4, 2). Hint: stretch the x axis.

(d) Compute the projections P (3)(C(3, 3)) and P (3](C(4, 3)), and draw the resulting polytopes.
Hint: projecting respects linear combinations.

(e) What is going on here? Make a conjecture.

(f) Prove that conjecture.

(g) [Challenge] Draw the cyclic polytopes C(3, 3), C(4, 3).

Q3. A hyperplane H in Rd is the set of solutions to a single linear equation.

(a) For d = 1, 2, 3, what are hyperplanes geometrically?

Let P := Conv(x1, . . . ,xn) ⊂ Rd be a d-dimensional polytope, and consider the intersection
of P with an hyperplane H. Either we have

(1) H ∩ P = ∅,

(2) H cuts P into 2 parts,

(3) H ∩ P ̸= ∅, and all the points on P \H lie on the same side of H.

The intersection H ∩ P of P with an hyperplane H is called a facet of P if

– H ∩ P = Conv(A) is the convex hull of a subset A ⊂ {x1, . . . ,xn},
– H ∩ P satisfies condition (3) above, and

– the dimension of H ∩ P is one less than that of P .

Consider again the standard 3-simplex ∆3 from Question 1. Its facets are all triangles.

(b) How many facets does ∆3 have?

(c) Is the following convex hull a facet of ∆3? Explain your answer.

Conv

10
0

 ,

01
0

 ⊂ R3

In our class, we have not formally defined dimension yet. However, in the examples of the
standard simplex and of cyclic polytopes C(n, d), the facets are exactly the convex hulls of
d-element subsets satisfying (3) above.

More precisely, a facet of a cyclic polytope C(n, d) is the convex hull Conv(xi1 , . . . ,xid) for a
subset I := {i1, . . . , id} ⊂ {1, . . . , n} such that all points xj for j /∈ I lie on the same side of
the hyperplane

H(I) := {α1xi1 + . . . αdxid | ∀j , αj ∈ R and α1 + · · ·αd = 1}.

A facet of a d-dimensional polytope C(n, d) always has dimension d− 1.
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(d) Draw C(4, 3), C(4, 2) and C(4, 1).

(e) Compute the hyperplanes H(I) for the facets I of each of these three cyclic polytopes.
You should obtain 4 equations of the form ax+ by+ cz = d for C(4, 3), 4 equations of the
form ax+ by = c for C(4, 2), and 2 equations of the form ax = b for C(4, 1).

A facet I of C(n, d) is an lower facet (resp. upper facet) if all the points xj for j /∈ I are above
(resp. below) the hyperplane H(I), with respect to the last (dth) coordinate. Let us denote by
U(C(n, d)) (resp. L(C(n, d))) the set of upper (resp. lower) facets of C(n, d).

(f) What are the upper and lower facets of C(4, 3), C(4, 2) and C(4, 1)? Draw them in
different colors.

(g) What do you observe?

(h) Draw P (3)(U(C(4, 3))) and P (3)(L(C(4, 3))), as well as P (2)(U(C(3, 2))) and P (2)(L(C(3, 2))).

(i) What do you observe?

Q4. [Challenge] We will now be interested in the cyclic simplex C(d + 1, d). Any subset I ⊂
{1, . . . , d + 1} of cardinality |I| = k + 1 defines, via the convex hull, a k-dimensional face
Conv({xi}i∈I) of C(d + 1, d). We define the k-source (resp. k-target) of C(d + 1, d) to be
the set of k-faces F of C(d + 1, d) such that Pk+1(F ) belongs to L(Pk+1(C(d + 1, d))) (resp.
U(Pk+1(C(d+ 1, d)))).

(i) Draw the k-source and k-target of C(4, 3), for all k ≥ 0.

We say that a sequence F1, . . . , Fℓ of faces of C(d + 1, d) is k-admissible if the k-target of Fi

and the k-source of Fi+1 have a k-face in common, for all 1 ≤ i ≤ ℓ−1. We say that C(d+1, d)
is loop-free if it does not admit any infinite k-admissible sequence, for any k ≥ 0.

(ii) Show that C(4, 3) is loop-free. Hint: do a proof by exhaustion.

Q5. [Challenge] A tiling of R2 a family F of polygons such that

(a)
⋃

F∈F F = R2, and

(b) whenever two polygons F,G ∈ F intersect, their intersection F ∩G is an edge of both.

Giving such a tiling, suppose moreover that for all polygons F ∈ F , no edge of F is perpendic-

ular to

[
1
0

]
. For each polygon F ∈ F , the k-source and k-target of F for k = 0, 1 are defined

in the same fashion as we did above for C(n, 2). Show that F is loop-free.

If you want to know more about the connections with contemporary research topics, you can look
at the following research articles/books (there are many pictures!):

▶ R.Street, The algebra of oriented simplices.

▶ M. Kapranov & V. Voevodsky, Pasting schemes and higher Bruhat orders.

▶ T. Dyckerhoff & M. Kapranov, Higher Segal Spaces.
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