Maximal degree subposets of ν-Tamari. II
Given a v-Dyck path D, define

$$
r_{i}=\text { base of each North step }
$$

$t_{i}=$ first point of same horizontal distance
$h_{i}=$ first point of same horizontal distance followed by East step or final point.

v-Tamari $>v$-Greedy
If r_{i} is preceded by E

In the case of m-Tamani we hewe

Thm (Denmenjion' 'zz)

$$
G_{m} \cong\left(\left(T_{m+1}\right)_{\text {in }}\right)^{\text {op }} \cong\left(T_{m+1}^{\circ p}\right)_{\text {out }}
$$

When $m=1$ Tannani

Gready

2-Tamari

A geormetrical interpnefation
OLs_: The Hasse diegroun of the Tamani lattice is the orimited 1-skeleton of the associathednon

$$
K_{1}
$$

$$
\begin{gathered}
K_{2} K_{3} \\
\left\{\begin{array}{c}
\text { faces of } \\
K_{n}
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { plowman tries with } \\
n+2 \text { leaves }
\end{array}\right\} \\
U \\
\left\{\begin{array}{c}
\text { vention of } \\
K_{n}
\end{array}\right\} \cong\left\{\begin{array}{l}
\text { planar binany tres } \\
\text { with } n+2 \text { leases }
\end{array}\right\}
\end{gathered}
$$

Def: A vector orients K_{n} if it is not penpendi milan to any edge of K_{n}.

The diagonal of K_{n}

$$
\begin{aligned}
\Delta: K_{n} & \longrightarrow K_{n} \times K_{n} \\
x & \longmapsto(x, x)
\end{aligned}
$$

is not cellarer

Cellular approximation:
a) agrees on varices with Δ
b) homotoric to Δ
c) image is a union of faces of $K_{r} \times K_{n}$

Cellular approximations are given by vertices of the fiber polytope

$$
\sum\left(\begin{array}{cc}
K_{n} \times K_{n} & (x, y) \\
\prod_{\pi} & \prod_{n} \\
K_{n} & \frac{x+y}{2}
\end{array}\right)=D\left(K_{n}\right)
$$

They are selected by generic vectors, which are in particular orientation vectors

Thm (Masuda-Touk: -Themos-Valldte)
There is a uniger venfer of $n\left(k_{n}\right)$ which induces the Tamani lattice on K_{n}.

Ohs: Orianted polytope \Rightarrow unigue sounce and sink on each face

$$
\Delta_{n}: K_{n} \rightarrow K_{n} \geqslant K_{n}
$$

Thm (MTV, Marke-Schnider, Sanehlidaz-Umble) cetlumbar areand

$$
\operatorname{Im} \Delta_{n}=\bigcup_{\operatorname{sk}(F) \leqslant \operatorname{se}(G)} F \times G
$$

We can "sec" Tm Δ_{n} by drawing $\pi\left(\operatorname{Im} \Delta_{n}\right)$

$$
(6,4),(F, b)(b, b)
$$

$$
(4.0) \quad(1,8)(65)(8.0),(2.3)
$$

Vertices ane thus the intervals in the tampa:
lattice A000260

$$
1,3,13,68,399 \ldots
$$

Faces of maximal dimension are in bijection with camopy/s achronizad intervals (via choice of a specific vertex on each one)

$$
1,2,6,22,91,408, \ldots
$$

Construction:

1) Consider the call $C:=k_{n} \times s k\left(k_{n}\right) \in \operatorname{Im} \Delta_{n}$
2) Each vertex of C is $s k(F \times G)$ for a unique pair $F \times G, \operatorname{dimf} f+\operatorname{dim} G=n$
${ }^{3}$) Consider the subposet $\left(T_{n}\right)$ of $T_{n} x \pi_{n}$ sparred by $S c(F \times G)$ for then pains

Conjecture (chap-ton):

$$
\begin{aligned}
L_{n} & \cong \operatorname{Pexten}\left(T_{n}\right) \\
& \cong \operatorname{Greed}_{y}\left(\mathbb{T}_{n}\right)^{0 p}
\end{aligned}
$$

Remarks:
a) Possible strategy: use Camille Combe's coordinates to characterize ln_{n}
b) Permenjian's fha is distinct

2 -Tamari $\neq 1$-station of $\operatorname{Im}_{m} \Delta_{n} \subset T_{n} \times T_{1}$
But it has a geometrical interientation
as subdivision of the assbciahedion!

GEOMETRY OF ν-TAMARI LATTICES IN TYPES A AND B

CESAR CEBALLOS, ARNAU PADROL, AND CAMILO SARMIENTO

Abstract. In this paper, we exploit the combinatorics and geometry of trioangulations of products of simplices to derive new results in the context of Catalan combinatorics of ν-Tamari lattices. In our framework, the main role of "Catalan objects" is played by (I, \bar{J})-trees: bipartite trees associated to a pair (I, \bar{J}) of finite index sets that stand in simple bijection with lattice paths weakly above a lattice path $\nu=\nu(I, \bar{J})$. Such trees label the maximal simplices of a triangulation whose dual polyhedral complex gives a geometric realization of the ν-Tamari lattice introduced by Prévile_Ratelle and Vimen-
not. In particular, we obtain geometric realizations of 4 CESAR CEbALLOS, ARNAU PADROL, AND CAMILO SARMIENTO polyhedral subdivisions of associahedra induced by an ar hyperplanes, giving a positive answer to an open questic

The simplicial complex underlying our triangulation lattice with a full simplicial complex structure. It is a nat the classical simplicial associahedron, alternative to the r of Armstrong, Rhoades and Williams, whose h-vector ϵ suitable generalization of the Narayana numbers.

Our methods are amenable to cyclic symmetry, whi type B analogues of our constructions. Notably, we defin generalizes the type B Tamari lattice, introduced indef and Reading, along with corresponding geometric realize

1-Tamari $n=4$

4-Tamari $n=3$

2-Tamari $n=4$

Figure 1. Bergeron's pictures "by hand" of m-Tamari lattices reproduced with permission from $[5$, Figures 4,5 and 6$]$.

1-Tamari $n=4$

4-Tamari $n=3$

2-Tamari $n=4$

Figure 2. Geometric realizations of m-Tamari lattices by cutting classical associahedra with tropical hyperplanes. Compare with Bergeron's pictures in Figure 1.

c) Simian definition for pumutithedrs? PHIz order could be a candidate

Chains in shard lattices and BHZ poses

Pierre Baumann, Frédéric Chapoton ${ }^{\dagger}$
Christophe Hohlweg ${ }^{\ddagger} \&$ Hugh Thomas ${ }^{\S}$

September 13, 2016

Abstract

For every finite Coxeter group W, we prove that the number of chains in the shard intersection lattice introduced by Reading on the one hand and in the BHZ poset introduced by Bergeron, Zabrocki and the third author on the other hand, are the same. We also show that these two partial orders are related by an equality between generating series for their Möbius numbers, and provide a dimension-preserving bijection between the order complex on the BHZ poset and the pulling triangulation of the permutahedron arising from the right weak order, analogous to the bijection defined by Reading bet and the same triangulation of t

Figure 2: The BHZ order on the symmetric group S_{3}

$$
\begin{gathered}
\text { Thank you for you } \\
\text { attention! }
\end{gathered}
$$

