Feuille 1 : Nombres complexes, séries de fonctions et séries entières

Nombres complexes

Exercice 1. Résoudre sur $\mathbb C$ les équations suivantes :

$$e^z = 3$$
, $e^z = -2$, $e^z = i$.

Exercice 2. 1. Soit $z = a + ib \in \mathbb{C}$.

- a. Déterminer le module et un argument du nombre complexe e^{e^z} .
- b. En déduire les parties réelle et imaginaire de ce nombre complexe.
- 2. Soit $\forall (a,b) \in \mathbb{R}^2, f(a,b) = e^{e^{a+ib}}$.
- a. On suppose que $\cos(b) < 0$. Montrer que

$$f(a,b) \underset{a \to +\infty}{\longrightarrow} 0.$$

b. On suppose que cos(b) > 0. Montrer que

$$|f(a,b)| \underset{a\to+\infty}{\to} +\infty.$$

c. On suppose que $\cos(b) = 0$. Que se passe-t-il lorsque a tend vers $+\infty$?

Exercice 3. On pose, pour z nombre complexe, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ et $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

1.a. Soit $a \in \mathbb{C}$. Montrer qu'il existe un nombre complexe non nul b tel que

$$b^2 - 2ab + 1 = 0.$$

- b. En déduire que la fonction cos est surjective de \mathbb{C} sur \mathbb{C} .
- 2. Montrer que la fonction sin est surjective de \mathbb{C} sur \mathbb{C} .

SUITES ET SÉRIES DE FONCTIONS

Exercice 4. 1. Soit $(f_n)_n$ une suite de fonctions continues définies sur un intervalle [a, b] de \mathbb{R} . Montrer que si $(f_n)_n$ converge uniformément sur [a, b] vers une limite f, alors pour toute suite $(t_n)_n$ de points de [a, b] convergeant vers une limite α , la suite $(f_n(t_n))_n$ converge vers $f(\alpha)$.

- 2. Calculer la limite de $(\cos(1/n))^n$ lorsque n tend vers l'infini.
- 3. Soit $f_n(t) = n \cos^n t \sin t$.
- (a) Montrer que pour tout $t \in [0, \frac{\pi}{2}]$, $f_n(t)$ tend vers zéro si n tend vers l'infini.
- (b) Montrer que la convergence n'est pas uniforme. (Indication : introduire $t_n = 1/n$).

Exercice 5. 1. Montrer que pour tout $t \in [0,1]$, $\sin(\pi t) \leq \pi(1-t)$.

2. Montrer que

$$\sum_{n=0}^{+\infty} \left(\int_0^1 t^n \sin(\pi t) \, dt \right) = \int_0^1 \left(\sum_{n=0}^{+\infty} t^n \sin(\pi t) \, dt \right).$$

(On pourra utiliser le théorème de Fubini pour les séries et la question précédente).

3. En utilisant la question précédente, montrer l'égalité

$$\sum_{n=0}^{+\infty} \left(\int_0^1 t^n \sin(\pi t) dt \right) = \int_0^{\pi} \frac{\sin x}{x} dx.$$

SÉRIES ENTIÈRES

Exercice 6. Démontrer les inégalités suivantes valables pour tout nombre complexe z:

(i)
$$|e^z - 1| \le e^{|z|} - 1 \le |z|e^{|z|}$$
, (ii) $|\cos z| \le \text{ch}|z|$.

Exercice 7. Déterminer le rayon de convergence des séries entières suivantes:

(i)
$$A(z) = \sum_{n \ge 1} \frac{2^n n^n}{(2n)!} z^n$$
, (ii) $B(z) = \sum_{n \ge 0} \frac{\sqrt{n}}{n^2 + 1} z^n$, (iii) $C(z) = \sum_{n \ge 1} \frac{\operatorname{ch}(n)}{\operatorname{sh}(n)^2} z^n$.

(iv)
$$D(z) = \sum_{n>1} \left(1 + \frac{(-1)^n}{n}\right)^n z^n$$
.

(v)
$$E(z) = \sum_{n \ge 0} \frac{a(a+1)...(a+n-1)}{n!} z^n$$
 ($a > 0$ donné), (vi) $F(z) = \sum_{n \ge 1} \left(\frac{\sin(\frac{1}{n})}{\ln(1+\frac{1}{n})}\right)^n z^n$.

(vii)
$$L(z) = \sum_{n>0} \operatorname{th}(n)^n z^n$$
, (viii) $M(z) = \sum_{n>0} d_n z^n$, où d_n est la $n^{i\grave{e}me}$ décimale du nombre π .

Exercice 8. Soit $\sum_{n\geq 0} a_n z^n$, une série entière de rayon de convergence égal à 1, et $\forall n\in\mathbb{N}, b_n=\sum_{k=0}^n a_k$.

- 1. Soit S_a et S_b , les sommes des séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$, et S_a^N , S_b^N leurs sommes partielles. Montrer que $(1-z)S_b^N = S_a^N b_N z^{N+1}$ pour tout N.
- 2. En déduire que la série entière $\sum\limits_{n\geq 0}b_nz^n$ a un rayon de convergence supérieur ou égal à 1 et que

$$\forall z \in D(0,1), S_b(z) = \frac{1}{1-z} S_a(z).$$

- 3.a. Prouver que $\forall n \in \mathbb{N}, \sum_{k=0}^{n} (k+1) = \frac{(n+1)(n+2)}{2}$.
- b. En déduire que

$$\forall z \in D(0,1), \sum_{n=0}^{+\infty} (n+1)(n+2)z^n = \frac{2}{(1-z)^3}.$$

Exercice 9. Soit $\sum_{n\geq 0} a_n z^n$, une série entière de rayon de convergence égal à $+\infty$.

On suppose que cette série entière converge uniformément sur \mathbb{C} .

1. Montrer qu'il existe un entier N tel que

$$\forall n \ge N, \forall z \in \mathbb{C}, \left| \sum_{k=n}^{+\infty} a_k z^k \right| \le 1.$$

2. En déduire que

$$\forall n \ge N, \forall z \in \mathbb{C}, |a_n z^n| \le 2.$$

3. Conclure que la série entière considérée est un polynôme.

Exercice 10. 1. Montrer qu'il existe une unique solution de l'équation différentielle $xy'' + 3y' - 4x^3y = 0$ de la forme $F(x) = 1 + \sum_{k \ge 1} a_k x^{4k}$, donnée par une série entière de rayon de convergence strictement positif, avec des coefficiens a_k à déterminer explicitement.

- 2. Quel est le rayon de convergence de cette série ? Donner une expression explicite de sa somme.
- 3. Montrer que toute solution G de l'équation développable en série entière près de l'origine vérifie G'(0) = 0.
- 4. Montrer que F est la seule solution développable en série entière au voisinage de l'origine vérifiant F(0) = 1.

Indication : On considèrera le wronskien de F et d'une autre solution linéairement indépendante définie sur $]0, +\infty[$.