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Preface

The subject of these lecture notes is modular operads and their rôle in string field
theory. We believe that the approach to string field theory based on homotopy
algebras and their operadic origin can be of interest to both theoretical physicists and
mathematicians. A mathematician can perhaps, starting from operads and homotopy
algebras related to them, find some conceptual explanation for the algebraic
structure of string field theory. A mathematically oriented physicist, starting from
string field theory, may find useful and appealing mathematical language and tools
of the theory of operads. We hope that this text will provide some inspiration to both
of them and thus enhance mutual interaction and progress in both areas.

Our presentation of string field theory is neither a textbook nor it provides a
proper introduction to the subject. This was not our aim. As already mentioned
above, we tried to present it, without going to details, from the perspective of
homotopy algebras and their operadic origin. Concerning operads, the presentation
can be used as an introduction to modular operads, their Feynman transform and
corresponding homotopy algebras.

In Part I, we start with a description of string field theory that should be familiar
to physicists and develop it in a way which makes the appearance of homotopy
algebras transparent. In this approach, Zwiebach’s construction of a string field
theory naturally emerges as a composition of two morphisms of particular odd
modular operads. In more traditional terms, these morphisms correspond to a
decomposition of a moduli space of Riemann surfaces and to conformal field theory,
respectively. A mathematically rigorous description of operads is presented in detail
in Part II. Whenever possible we comment on the connection between the two parts
by at the end of the respective sections.

A more detailed description of the structure of the book and the content of the
individual chapters is given in the introduction. In Part I, written by B. Jurčo and
I. Sachs, we comment at the end of each chapter on literature, which either we
followed in our exposition or where an interested reader can find further details. In
Part II, written by M. Doubek and M. Markl, the references are listed at the end of
each chapter.

I.S. and B.J. would like to thank Maxim Grigoriev for helpful comments
on Part I of the book and Kai Cieliebak, Ted Erler, Korbinian Muenster, and
Sebastian Konopka for valuable discussions that helped to develop the ideas that
are presented in this book. I.S. would like to acknowledge the hospitality of Clare
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Hall, Cambridge where most of Part I was written and the DFG Excellence cluster
ORIGINS. Research of B.J. was supported by GAČR Grant EXPRO 19-28268X.
M.M. acknowledges the support of Praemium Academiae, grant GAČR 18-07776S
and RVO: 67985840 during the last stages of his work on the book.

Prague, Czech Republic Branislav Jurčo
Prague, Czech Republic Martin Markl
Munich, Germany Ivo Sachs
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1Introduction

Loosely speaking, a modular operad can be pictured as a set of vertices, or corollas,
labeled by the number of legs n and a further integer g interpreted as the genus. Two
corollas can be composed. For each pair of legs (one from the first corolla, another
from the second one), the composition is done by joining the legs and contracting
the resulting edge. This composition decreases the total number of legs by two and
is additive with respect to the genera. Similarly, for each pair of legs of the same
corolla, there is a self-composition consisting of joining the legs and contracting
the resulting edge. Such a self-composition reduces the number of legs by two and
increases the genus by one. Further, corollas admit an action of the symmetric group,
by permuting the legs of a corolla. To define the structure of a modular operad (in
the category of differential graded vector spaces) we need a prescription associating
to each corolla a dg (differential graded) vector space. Also, we need a prescription
transferring the compositions and the action of the symmetric group from corollas
to the associated vector spaces in a natural way. These prescriptions determine the
particular kind of a modular operad we are dealing with, e.g., modular commutative
operad, modular associative and so forth.

The Feynman transform associates to a modular operad an odd modular operad in
a way reminiscent of constructing Feynman graphs in quantum field theory. Here,
“odd” refers to the operadic compositions, which have now degree one. Roughly
speaking, Feynman transform is a free operad generated by a properly suspended
dual and a differential formed using the duals of the operadic compositions of the
original modular operad. Since as an odd operad the Feynman transform is generated
by corollas, it can be described in terms of graphs with external legs and any
numbers of loops resulting from concatenation of corollas, similarly as Feynman
graphs are composed from the interaction vertices.

An important example of an odd modular operad is the endomorphism operad
associated with a differential graded vector space equipped with an odd symplectic
form. An algebra over an odd modular operad is a morphism from it to the
endomorphism operad, i.e. its representation. The algebra resulting in this way

© Springer Nature Switzerland AG 2020
M. Doubek et al., Algebraic Structure of String Field Theory, Lecture Notes
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2 1 Introduction

from the Feynman transform of the modular commutative operad is the loop
homotopy algebra (aka quantum L∞-algebra). Such an algebra can equivalently
be characterized by a solution to the quantum Batalin–Vilkovisky (BV) master
equation, i.e., by Maurer–Cartan elements of the corresponding BV algebra. The
origin of the BV operator and the BV bracket can be traced back to the operadic self-
compositions and compositions, respectively. Obviously, this is one of the reasons
why operads and the corresponding algebras are relevant to physics. More generally,
a morphism from the Feynman transform of any modular operad to a general odd
modular operad can be described by a solution to a proper generalization of the
quantum BV equation.

All of these constructions contain a genus zero part, due to the forgetful functor
from the category of modular operads to the category of cyclic operads. One simply
forgets about loops. Hence, the dg-vector spaces associated with corollas with non-
zero genus are trivial as well as the operations corresponding to self-contractions
of corollas. This functor has an adjoint, the modular completion (or envelope),
which roughly speaking freely adds loops. The resulting (cyclic) homotopy algebras
(e.g., L∞- or A∞-algebras) can then be described by solutions to the corresponding
classical master equations.

All this is nicely illustrated by string field theory. For simplicity, let us consider
closed strings. One starts with the modular commutative operad (the modular
envelope of the cyclic commutative operad) and its Feynman transform. The theory
of closed strings provides us with two natural odd modular operads. One is formed
by the singular chain complex on the moduli space of closed Riemann surfaces with
punctures and with the operadic compositions induced from (twisted) sewing and
self-sewing of surfaces. The other one is the endomorphism operad over the state
space of the (first quantized) closed string with the differential given by the BRST
(Becchi-Rouet-Stora-Tyutin) operator and the odd symplectic form induced by the
BPZ (Belavin-Polyakov-Zamolodchikov) pairing.

A morphism from the Feynman transform of the modular commutative operad
to the first one gives a BV structure on the moduli space of Riemann surfaces
and a solution to the corresponding quantum BV equation. This solution describes
the decomposition of the moduli space and hence tells us what the geometric
vertices are. This is the geometric background independent part of the construction
of closed string field theory in Zwiebach’s approach. It is then composed with a
morphism of odd modular operads, provided by conformal field theory, going from
the moduli space operad to the endomorphism operad associating algebraic vertices
to the geometric ones. This is the background dependent part of the construction.
This composition describes a particular morphism from the Feynman transform of
the modular commutative operad to the endomorphism operad, i.e., a solution to
the quantum BV equation, describing the algebraic vertices forming the quantum
BV action of the closed string field theory. Obviously, the vertices are labeled by
their valence n and the genus g. The algebraic vertices are degree zero graded
symmetric functions on the string state space. Using the odd symplectic form,
one can equivalently use the string operations, i.e., degree one graded symmetric
multilinear maps from the state space to itself. Hence, we have a description in
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terms of a collection of n−1-ary brackets of degree one labeled by genus g. The
genus zero part of the construction describes the classical closed string field theory.

This picture remains valid for the full quantum open-closed string field theory.
One has to use a two-colored modular operad combining the modular commutative
and associative operads, consider the moduli space of bordered Riemann surfaces
with punctures in the interior as well as on the boundaries, and the open-closed
conformal field theory.

When described in terms of higher brackets, a loop homotopy algebra can be
viewed as a particular example of an IBL∞ (homotopy involutive Lie bi-) algebra.
For this, we view the BV operator Δ as an operation with zero input and two
outputs, i.e., as a particular cobracket. The algebraic properties of the brackets and
the cobracket are (after a dualization) encoded in the square-zero condition on the
full quantum BRST operator Δ + {S,−}. Here, S is the quantum BV action and
{−,−} the BV bracket. IBL∞-algebras are algebras over the cobar complex of the
terminal properad. Roughly speaking, we consider corollas as before but now their
legs are oriented, they can be either outputs or inputs. The operations can now be
pictured by simultaneously joining several outputs of one corolla with inputs of an
another one followed by a contraction of new edges created in the process. Since
the simultaneous joining of legs of two corollas increases the genus, we do not need
an analogue of the self-composition from modular operads any more. In this book
we describe IBL∞-algebras, but refrain from introducing properads. The related
constructions are analogous to the case of operads but more complex. Nevertheless,
the approach using the language of IBL∞-algebras is fruitful and can be used for
an algebraic description of the open-closed string theory, leading to its formulation
analogous to Kontsevich’s formality.

We start with an introduction of the concepts relevant to the BV action as it
arises in string field theory in Part I, while in Part II we focus on the theory
of (cyclic, modular, odd modular) operads and morphisms between these which,
in turn, correspond to the homotopy algebras introduced in the physics context
of Part I. Also, a concise mathematical description of IBL∞-algebras is given in
Part II. A more informal parallel description of these in a form directly used in
our description of the open-closed string field theory is provided in the appendix to
Part I. Whenever possible we will comment on the connection between these two
parts at the end of the respective sections.

Structure of the Book In the first chapter, we formulate the relativistic scalar field
within the BV formalism starting from the world-line formulation for a relativistic
particle. This serves primarily as a toy model and a motivation for the analogous
construction in string field theory. In this approach, the appearance of differential
graded algebras and homotopy algebras within the BV formalism becomes very
natural. As explained in detail in Part II, the homotopy algebras of quantum field
theory and string field theory are representations of operads. For example, as already
mentioned above, loop homotopy algebras which are directly related to the usual BV
formalism are described as operad morphisms from the Feynman transform of the
modular envelope of the cyclic commutative operad to the endomorphism operad.
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Operads related to moduli spaces will not appear in this chapter. Though it seems
natural to consider moduli spaces related to metric graphs, this would take us far
beyond the scope of the present lecture notes.

In Chap. 2, we generalize the above constructions to closed strings. This naturally
leads to the construction of BV algebras and their Maurer–Cartan elements through
the decomposition of the relevant moduli spaces of Riemann surfaces. Combined
with the morphism from the moduli BV algebra to the closed string BV algebra
provided by the conformal field theory, this decomposition gives the vertices of the
corresponding string field theory action. The whole construction is mathematically
interpreted again in terms of a representation of the Feynman transform of the
modular commutative operad described in Part II. We also include a section on
the uniqueness and background independence of the resulting algebraic structure,
which is an important issue in string theory but can be bypassed by readers who are
primarily interested in the operadic/algebraic aspects of string field theory only.

In Chap. 3, we introduce open strings. Here, in analogy with the point particle,
the algebraic structure simplifies to that of a differential graded algebra (DGA).
Nonequivalent deformations of classical open string theory are governed by its
cyclic cohomology. Non-trivial elements are realized as A∞-algebras that come
with it. According to general theory described in Part II, A∞-algebras and their
cyclic versions are interpreted as representations of the cobar complex of the Ass-
operad and its cyclic version, respectively.

Part I then closes with Chap. 4, which gives an account of the open-closed
homotopy algebra. The chosen algebraic description is that using involutive bi L∞-
(IBL∞-) algebras which are revisited in the appendix to this chapter and again, from
an alternative angle and more rigorously, in the last section of Part II. As already
mentioned, this approach would need to introduce properads, which is far beyond
the scope of this introductory lecture notes. The open-closed homotopy algebra
has also an operadic description in terms of a colored operad (open-closed operad
combining the modular commutative and associative operads) which will, however,
also not be covered in this book. This is, however, a straightforward extension.

The main idea behind the presentation and the structure of this book is perhaps
best summarized by the commutative diagram of odd modular operads in Fig. 1.1,
leading to a construction of a quantum string field theory. Let us specify it in
the case of the closed bosonic quantum string field theory, the example discussed
most thoroughly in these lecture notes. Starting from the Feynman transform of
the modular commutative operad, the horizontal arrow determines a Maurer–Cartan
element in the BV algebra of chains on the moduli space of closed Riemann
surfaces with punctures, i.e., a decomposition of the moduli spaces determining
the geometric vertices. The vertical arrow stands for a morphism from the BV
algebra of chains on this moduli space to the endomorphism operad determined by
the closed conformal field theory. In particular, it maps a Maurer–Cartan element
(the geometric vertices) to the Maurer–Cartan element (the algebraic vertices)
that defines a gauge invariant bosonic closed quantum string field theory action.
Hence, the diagonal arrow determines a particular solution to the algebraic Batalin–
Vilkovisky master equation on the BV algebra of functions on the underlying graded
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FT of a modular operad
geom. vertices

alg. vertices

Chains on a moduli space

CFT

Endomorphism operad

Fig. 1.1 Construction of string field theory in terms of morphisms of (odd modular) operads

differential vector space V , the state space of the closed conformal field theory, i.e.,
of the fist quantized closed bosonic string.

As already mentioned above, the bosonic quantum open-closed string theory can
be constructed similarly. Furthermore, we believe that also superstring field theories
could in principle be constructed in this way, here the difficult part is the horizontal
arrow. It is not obvious how to mimic Zwiebach’s construction of geometric vertices
to the case of super Riemann surfaces. Finally, since any quantum field theory can
be formulated as a BV theory, it should allow for an interpretation/construction
according to our commutative triangle. Probably, the moduli spaces of tropical
curves and world line formulation of quantum field theory (QTF) should lead to
this as well.



Part I

Physics Preliminaries

The standard formulation of perturbative string theory consists of a set of rules
to compute scattering amplitudes for a collection of n particles—excitations of
a string—typically propagating on a D-dimensional Minkowski space-time M . In
the simplest case of tree level scattering amplitudes, this prescription involves an
integration over the moduli space of spheres with n punctures (or disks with n

punctures on its boundary for open strings) and provides a very efficient procedure
to compute scattering amplitudes. On the other hand, comparing this with the
approach taken for point particles the situation in string theory seems somewhat
incomplete. Indeed, for point particles one starts with an action principle for a set of
fields and then obtains the tree level scattering amplitudes by solving the equations
of motions deriving from this action. Since the various string excitations ought to be
interpreted as particles, one would hope to be able to apply the same formalism for
the scattering of strings. The aim of string field theory is precisely to provide such an
action principle so that the set of rules to compute scattering amplitudes for strings
derive from this action. Since the string consists of an infinite linear superposition
of point particle excitations, one would expect that such an action may be rather
complicated. Yet the first construction of a consistent classical action of interacting
open strings has a remarkably simple algebraic structure of a differential graded
associative algebra (V , ∗, d) together with an odd symplectic form compatible with
d and ∗. Such a structure is called a cyclic differential graded associative algebra.

It turns out that this simple theory does not lead to a consistent quantum
theory without the inclusion of closed strings. However, closed strings require a
more elaborate construction, which nevertheless has a similarly appealing algebraic
structure. For this, one necessarily needs all closed string loops. Therefore, one starts
with a decomposition of the relevant moduli space of closed punctured Riemann
surfaces Σ together with coordinate curves around each puncture into elementary
vertices and propagators. The condition that this moduli space is covered exactly
once by the Feynman diagrams built from this data implies that the geometric
vertices satisfy a Batalin–Vilkovisky (BV) master equation. This equation encodes
information about the decomposition of the relevant moduli space. In a next step
one endows the punctures of Σ with an extra structure by attaching a vector space
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V to each puncture. This vector space could be the deRham complex of the target
manifold, as is the case for the topological string, or the quantum mechanical Hilbert
spaces of physical degrees of freedom such as photons or gravitons. The geometric
BV master equation is then transferred to V by means of a two-dimensional
conformal field theory defined on the geometric vertices. This conformal field theory
furthermore endows V with an inner product, more precisely, with a symplectic
form. This provides the data needed to define a BV action on V , that is a field
theory action of closed strings.

It turns out that, at genus zero, the vertices of this BV action satisfy the axioms
of a cyclic L∞-algebra, which is a differential graded Lie algebra up to homotopy.
Thus, we find that the mathematical structure of classical closed string field theory
is simply that of a cyclic L∞-algebra supported by the vector space V of closed
string states together with a symplectic form. Similarly, at genus zero, any consistent
covariant open string field theory carries a structure of a cyclic A∞-algebra, that is,
a differential graded associative algebra up to homotopy.

We already mentioned above that open string field theory is not consistent at the
quantum level without inclusion of closed strings. This raises the question about the
algebraic structure of the combined system of open and closed string field theory. At
genus zero, it is that of an open-closed homotopy algebra which is a realization of an
L∞-morphism that maps closed string states to open string vertices. This map turns
out to be a quasi-isomorphism, that is, there is an isomorphism between physical
closed string states and classically consistent open string field theories.

If we include closed string loops, the elementary geometric vertices are realized
by genus g Riemann surfaces with punctures. The quantum master equation then
involves the BV operatorΔ. This originates from the corresponding operation acting
on a geometric vertex, which increases the genus of Σ by one by glueing two
punctures with a zero length propagator and thus comes with a power of h̄ in the
BV equation. If the algebraic vertices are interpreted as functions on the (graded
symmetric) tensor products of the physical Hilbert space (denoted by V above) then
Δ can be implemented as the inverse of the symplectic form ω on V . The algebra
realized by these functions subject to the BV master equation is the loop homotopy
algebra (or quantum L∞-algebra). Since closed string field theory is perturbatively
consistent, this is the algebraic structure of the complete quantum field theory of
closed strings.

The quantum open-closed homotopy algebra has an analogous physical interpre-
tation as the classical (genus zero) one. For this the natural framework is that of
IBL∞-algebras. The quantum open-closed vertices realize an IBL∞-morphism that
maps closed string states to open string vertices of higher genus. We will discuss all
this in the present lecture notes from both mathematics and physics points of view.
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As briefly explained in the introduction, the BV formalism plays the central role in
the construction of a gauge invariant action for string field theory. By now, there
are many excellent texts on the BV formalism. We will thus not present a detailed
account. However, the construction of a BV action in string field theory is rather
different from that in gauge theories. In some ways it goes backwards! Indeed, in the
original BV construction, the starting point is a gauge invariant action (or boundary
condition). The gauge theory is then extended by addition of further fields (ghost,
ghosts for ghosts, etc.) and anti-fields. The action gets extra terms which contain new
fields and anti-fields. Expanding the so obtained extended action around a critical
point naturally induces an L∞-algebra structure. In contrast, in string field theory,
the initial action or boundary condition is generically unknown. Nevertheless,
starting from the world-sheet description which is a convenient formulation of string
theory, and decomposing the scattering amplitudes into irreducible components, one
directly constructs the perturbative expansion of the BV action around a critical
point with all anti-fields included.

It turns out that a simplified version of the algebraic structure described in the
introduction is already present for point particles. We will therefore begin with
the construction of the BV action for a spinless particle starting from the world-
line formalism. Of course, for that system a consistent field theory can easily be
constructed by other means as it is done in the standard textbooks of quantum field
theory. However, for illustration of the formalism at work in string theory, including
the algebraic structure and its operadic description, this approach seems appropriate.

2.1 BV Action for the Point Particle

We consider a single point particle propagating on a non-compact manifold M with
a pseudo-Riemannian metric g. The world-line of the particle defines a parametrized
curve φ : [τi, τf ] → M . The basic object in our construction of a space-time action

© Springer Nature Switzerland AG 2020
M. Doubek et al., Algebraic Structure of String Field Theory, Lecture Notes
in Physics 973, https://doi.org/10.1007/978-3-030-53056-3_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53056-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-53056-3_2
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for the point particle is the world-line action functional

I [φ, e] = 1

2

∫
[τi ,τf ]

(
1

e
g(φ̇, φ̇)−m2e

)
dτ , (2.1)

where e(τ ) is a non-dynamical einbein on the world-line and the vector field φ̇ =
d
dτ
φ ∈ TM is tangent to the curve φ. As a consequence of the reparametrization

invariance, φ(τ)→ φ(f (τ)), this action is invariant under

δφ = φ̇

e
ε(τ ) , δe = ε̇(τ ) , (2.2)

for f (τ) = τ − ε(τ )
e(τ )

+O(ε2), where ε is a smooth function with ε(τf )=ε(τi)=0.
In particular, with a suitable choice of f (τ) we can set e(τ ) to be a constant. On
the other hand, elimination of e by solving the corresponding constraint equation
1
e2 g(φ̇, φ̇)+m2 = 0 reproduces the usual geodesic length

I [φ] = m

∫ τf

τi

√
−g(φ̇, φ̇) dτ ,

which is the familiar action for a relativistic point particle.
For quantization, the action (2.1) is, however, more suitable since it is polynomial

in the world-line field φ. We first consider path integral quantization which is
formally defined by replacing classical trajectories by a functional integral over
paths with evolution kernel

K(τf , τi , φf , φi)
f orm=

∫
D[φ, e] e i

h̄
I [φ,e]

. (2.3)

Here we assume fixed boundary conditions φ(τi) = φi, φ(τf ) = φf . Due to
the invariance (2.2) the path integral measure in (2.3) is degenerate. This can be
remedied with the help of the Faddeev–Popov BRST procedure where one starts
with an action functional on a super manifold M

I [φ, e, b, c, π̄] =
∫ τf

τi

(
1

2e
g(φ̇, φ̇)− m2e

2
+ ibċ+ π̄(e − ê)

)
dτ , (2.4)

where ê is a reference einbein which can be set to be one, ê = 1, by rescaling τ .
The maps

{φ, π̄, b, c} : [τi, τf ] → M (2.5)

from the world-line to a super manifold form a graded commutative algebra under
point-wise multiplication. In physics, the Z grading is often referred to as the ghost
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number gh, with gh(φ, e, π̄ ) = 0 and gh(c) = −gh(b) = 1, respectively. In this
chapter, we will identify this ghost number with the degree. The Lagrange multiplier
field π̄ localizes the functional integral over e which is sufficient to remove the
degeneracy of the path integral measure. The role of the (b, c) ghost system is to
cancel the Jacobian arising from the reparametrization (2.2).

The constraint action (2.4) has a nilpotent (BRST) symmetry

δBRST e = −iċ , δBRST φ = −i φ̇c
e
, δBRST b = π̄ , δBRST c = δπ̄ = 0 ,

as can be most easily seen by noticing that

I [φ, e, b, c, π̄] = I [φ, e] −
∫

δBRSTb(e − ê).

Clearly, δ2
BRST = 0, so that δBRST defines a cohomological vector field on

the graded space of trajectories (2.5). The addition of the BRST exact term in
I [φ, e, b, c, π̄] localizes the functional integral at the critical points of the BRST
exact piece. Indeed, upon elimination of π̄ the constraint e ≡ 1 is enforced so that
the kernel

K(τf , τi, φf , φi) ≡
∫

D[φ, b, c] J e i
h̄

∫ τf
τi

(
1
2 g(φ̇,φ̇)− 1

2m
2 +ibċ

)
dτ

(2.6)

is well defined. Here,

J = 1

det′( i
h̄
∂τ )

is included for later convenience. The prime ′ is to highlight the fact that the
constant mode corresponding to the translation in proper time has not been included
in the above path integral measure. It will be included below in Eq. (2.11). The
reduced action (2.6) still enjoys a residual symmetry

δBRST φ = −iφ̇c , δBRST b = 1

2

(
g(φ̇, φ̇)+m2

)
. (2.7)

In the canonical (as opposed to path integral) quantization of the reduced action
(2.6), {p, φ, c, b} form a graded operator algebra with non-vanishing, graded, equal
proper-time commutation rules

[φ, p] = i1 and [b, c] = 1 , (2.8)



12 2 Relativistic Point Particle

acting on a graded vector space V overC spanned by the quantum-mechanical states
ψ of our spinless particle. Here and in what follows we set h̄ = 1. To construct an
irreducible module for the above canonical commutation relations, we start with
representing the operator φ on functions as the multiplication by the cartesian
coordinates φi and p as the derivative

p = 1

i
∇φ .

The degree zero part of the module V is then naturally identified with the vector
space of test functions on M with suitable regularity and integrability properties.
To continue, we realize the anticommuting (b, c)-system on V in analogy to the
(p, φ)-system by taking c to act through multiplication by c and

b = ∂

∂c
. (2.9)

This completes the construction of V as a module over the Grassmann numbers
CZ2 = C0 ⊕ C1, where C0 resp. C1 represent the commuting, respectively,
anticommuting numbers. Altogether, V is the tensor product of the space of wave
functions of a scalar particle with the two-dimensional Fock space of the (b, c)-
system. A generic vector ψ ∈ V is of the form f0(φ)+ f1(φ)c = Ψ iei , where {ei}
is a homogeneous basis of the vector space V . f0 and f1 are C- and Grassmann-
valued functions, respectively, interpreted as space-time fields. The degree of Ψ i is
such that Ψ has total degree 0.

The BRST symmetry (2.7) is then generated through commutation with

Q = cH , H = 1

2

(
g−1(p, p) +m2

)
. (2.10)

Remark 2.1 In the BV formalism which we will review below, fields of degree zero
are interpreted as classical fields, while fields of degree −1 are referred to as anti-
fields, see also Sect. 2.3. Also, sometimes it will be convenient to write δ(c) instead
of c. This is possible due to c being of odd degree.

Remark 2.2 To derive the correct BRST transformations in this way, one has to use
the equation of motion g(φ̇, ·) = p. Alternatively, one can work in the phase space
where

I [φ, b, c, π̄] =
∫ τf

τi

(
pφ̇ − 1

2
(g−1(p, p) +m2)+ ibċ

)
dτ ,

which, in turn, is invariant under

δBRST φ = −ip(c) , δBRST b = 1

2

(
p2 +m2

)
, and δBRST c = δBRST p = 0 ,

now generated by (2.10) without using equations of motion.
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The action of Q on V is unambiguously determined by the representation (2.8)
and (2.9). Furthermore, Qψ = 0 enforces the physical or on-shell condition.
More precisely, the physical states are usually identified with H |deg 0, where
H = coh(Q, V ), but in this book we will sometimes ignore the restriction to deg
0 and refer to physical states simply as to elements of H and use sometimes the
notation Vphys or VP for it.

Given our construction of V above, ψ ∈ V is physical or on shell if H ψ0 = 0.
Note that, since H = [Q,b], the world-line Hamiltonian H for this dynamical
system is Q-exact.

Returning to the path integral, for a given interval Δτ = τf − τi , the kernel
K(Δτ, φ1, φ0) has the physical interpretation of the quantum-mechanical propaga-
tion in proper time between initial and final state of the particle by integrating the
kernel against the wave functions ψ(φ, c) as

K(Δτ,ψ2, ψ1) =
∫

dc dφ2 dφ1 ψ̄2(φ2, c)ψ1(φ1, c) K(Δτ, φ2, φ1) . (2.11)

Here, the integral
∫
dc over the constant c-ghost arises from fixing the invariance of

the world-line path integral measure under proper-time translations. For Δτ → 0,
the functional integral kernel (2.6) reduces to a delta function1

δ(φ2 − φ1) (2.12)

thus (2.11) defines a degree −1 symplectic form

〈ψ2, ψ1〉 ≡ K(0, ψ2, ψ1) =
∫

dcdφ ψ̄2(φ, c)ψ1(φ, c) . (2.13)

Note that, due to the presence of the c-zero mode, the paring is between subspaces of
V with different degree. This may seem counter intuitive but it is, in fact, a common
feature in BV quantization.

We now have all ingredients needed to define an action functional on V ,

S[ψ] = 1

2
〈ψ,Qψ〉 . (2.14)

This action reproduces the correct on-shell, or physical state condition from the
variational principle for ψ when evaluated at degree 0.

Interactions between scalar particles can be included by considering the propa-
gation of the first particle in the potential of the second as in Fig. 2.1. If we denote
by ψ2(φ) the wave function of the second particle, then the world-line of the first
particle couples to the latter through ψ2(φ(s)) where s is the proper time of the first

1Strictly speaking this holds only for Riemannian signature on M and should be suitably defined
with an iε prescription as known from quantum field theory textbooks.
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Fig. 2.1 Sketch of the
world-line of the first particle
(straight line) in the
background of the second
represented by circles in
analogy with to propagation
through a water wave

particle. Therefore, the correct generalization of the evolution kernel (2.11), linear
in ψ2, is obtained by replacing the right-hand side of (2.11) by

∫
Δτ

ds

∫
dc dφf dφi ψ̄3(φf )

∫
D[φ, b, c] eiI [φ,b,c] δ(c(s)) ψ2(φ(s)) ψ1(φi)

(2.15)

=
∫
Δτ

ds

∫
dc dφf dφidφ ψ̄3(φf ) K(τf , s, φf , φ) c(s) ψ2(φ)

×K(s, τi , φ, φi) ψ1(φi) ,

where we used again that δ(c(s)) = c(s) in the second line and omitted the ghost c
from the arguments. The insertion of δ(c(s)) in the above expression is required to
ensure that the only reparametrizations that are gauge fixed are those which preserve
the interaction point. If we then strip off the free propagation which amount to letting
Δτ → 0 in the evolution kernel, this defines a product on V ,

∗ : V ⊗ V → V , ψ ⊗ ψ 
→ cψ2 ,

which is commutative, associative, and of degree one. It is not hard to see that (2.15)
can be reproduced upon adding a cubic term to (2.14), i.e.,

S[ψ] = 1

2
〈ψ,Qψ〉 + 1

3
〈ψ,ψ ∗ ψ〉 . (2.16)

The algebraic structure of the action (2.16) is that of a nilpotent abelian dif-
ferential graded (dg) algebra (V ,Q, ∗), together with a non-degenerate symplectic
form ω. The relations are

Q2 = ∗2 = Q∗ = ∗Q = 0 . (2.17)

Finally, let us comment on the BV action corresponding to (2.16). Formally, this
action is invariant under ψ → ψ + Qλ where λ has degree −1. The idea of the
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BV formalism is to generate this transformation classically, through a canonical
transformation

δψ = δΨ iei = {S,Ψ i}ei , (2.18)

where the BV bracket {−,−} is defined through

{A,B} = ∂lA

∂Ψ i
ωij

∂rB

∂Ψ j
. (2.19)

Here ∂l/r denote the left/right derivatives andωij is the inverse of the odd symplectic
form ωij dΨ

i ∧ dΨ j , where Ψ i is an odd or even coordinate. Furthermore,

ωij = ω(ei , ej ) ≡ (−1)deg(ei)〈ei , ej 〉 . (2.20)

The BV action corresponding to (2.16) is then given by

S[ψ] = 1

2
ω(ψ,Qψ) + 1

3
ω(ψ,ψ ∗ ψ) (2.21)

but without any restriction on the degree of ψ . This is not a generic feature of BV
actions. However, it will be the case in the examples relevant for this book. The
invariance of the action is then encoded in the classical BV equation

{S, S} = 0 . (2.22)

The familiar cubic action for a scalar field is obtained by restricting ψ to the degree
zero subspace of V .

Remark 2.3 The alert reader noticed that the gauge transformations are in fact
trivial in the present case since there are no degree −1 fields in V for the point
particle. Thus, the ghost system is redundant for the action (2.18) on V and there
is a much simpler description of the spinless relativistic particle by dropping the c
ghost altogether in the definition of the action (2.18) and working directly with the
inner product given on the right-hand side of (2.13) without the ghost contribution.
Nevertheless we will continue to use this “redundant” notation because it serves as
a simple and useful illustration for the string.

Remark 2.4 Throughout this chapter we have considered propagation of a point
particle on M with a given metric g. We may ask how is the BRST charge Q is
modified under a small variation of g, g → g + δg. For this we first note that if
(M, g + δg) is diffeomorphic to (M, g), then the modified BRST charge should be
equivalent to the original one. Thus, we expect that the deformation theory of Q
should be a cohomology problem. In the example at hand, it is easy to see how this
works. For a generic deformation of the metric we have

δQ = −cδg−1(p, p) ,
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which is clearlyQ-closed since c squares to zero. On the other hand, if g+δg = f ∗g
for an infinitesimal diffeomorphism generated by a smooth vector field ξ , then δQ =
− 1

2 [Q,p(ξ)]. Thus the nonequivalent deformations of the point particle action are
given by the cohomology of the adjoint action of Q at degree 1, while the spectrum
of physical states is isomorphic to the cohomology of Q at degree 0.

2.2 Scattering Matrix andMinimal Model

In particle physics, one is typically (though not exclusively) interested in transition
amplitudes between ingoing and outgoing particles. In the absence of four-body
interactions the three possibilities, s-, t-, and u-channel in physic parlance, for four
particles to interact are given in Fig. 2.2. In the world-line formulation such an
amplitude corresponding to the first graph in Fig. 2.2 is given by the generalization
of (2.15), that is

∫ τf

τi

ds2

∫ s2

τi

ds1

∫
dc dφf dφi (2.23)

∫
D[φ, b, c] e iI [φ,b,c] ψ̄4(φf ) δ(c(s2)) ψ3(φ(s2))

× δ(c(s1)) ψ2(φ(s1)) ψ1(φi) .

The insertions of the c-ghost delta functions are to remove the gauge fixing the
proper times, s1 and s2, of the interaction vertices as before, since these are moduli
to be integrated over. Expressed in terms of the evolution kernels, this becomes

∫ τf

τi

ds2

∫ s2

τi

ds1 dφf dφ2dφ1dφi ψ̄4(φf ) K(τf , s2, φf , φ2)

∫
dc c ψ3(φ2) K(s2, s1, φ2, φ1)

∫
dc c ψ2(φ1) K(s1, τi , φ1, φi)ψ1(φi) .

ψ4

ψ3

ψ2

ψ1

τ

ψ4

ψ1

ψ2

ψ3

τ

ψ4

ψ2

ψ1

ψ3

τ

Fig. 2.2 The three distinct world-line diagrams for the scattering of four particles. The affine
parameter τ parametrizes the “length” of the internal line
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The first and the last insertions of the evolution kernel K correspond to the free
propagation of the initial and final states. The standard procedure is to “amputate
these external lines” in order to isolate the scattering process. The amplitude (2.23)
then reduces to

∫ ∞

0
ds dφ2dφ1

∫
dc (ψ̄4 ∗ ψ3)(φ2) K(s, φ2, φ1)

∫
dc (ψ2 ∗ ψ1)(φ1) ,

(2.24)

where s = s2−s1. Here we used (2.12) as well as (2.15) and set τi = 0 and τf = ∞.

Remark 2.5 More precisely, the s-integral in (2.24) should be understood as
follows. Starting from (2.23) one should consider τf of the form τf = aeiθ with
θ ∈ (0, π2 ] and preform the limit a → ∞ in order to get (2.24). This will improve
the convergence of the resulting s-integral for an open subset of possible momenta
of the external states. The integrand is analytic in the first quadrant so that the result
does not depend on the value of θ . To continue, we take θ = π

2 , which is equivalent
to the substitution τ → iτ , i.e., Wick rotation to imaginary time.

Returning to the canonical formalism, now with imaginary proper-time evolution
operator e−H τ , the expression (2.24) can be written equivalently as

〈ψ4 ∗ ψ3,Q
−1(ψ1 ∗ ψ2)〉 = 〈ψ4, ψ3 ∗Q−1(ψ1 ∗ ψ2)〉 , (2.25)

where we used the cyclicity (〈a ∗ b, c〉 = (−1)|b|〈a, b ∗ c〉) and where Q−1 is the
propagator, the homotopy inverse of Q on the complement to H , |b| is the degree
of b. More precisely, let P be the projector to H , the cohomology of Q in V . Then

Q−1Q+QQ−1 = 1− P , Q−1 = b

H
(1− P) . (2.26)

Note that due to (2.8) the action of the operator b is identified with
∫
dc = ∂

∂c
.

Remark 2.6 More precisely, in order to define Q−1 we first embed H in ker(Q)

ker(Q) = i(H)⊕ VT , (2.27)

where VT = Im(Q) in V . If VU is the linear complement to ker(Q) in V such that
ω|H and ω|VT⊕VU are symplectic and ω|VT = ω|VU ≡ 0, then Q is an isomorphism
VU ∼= VT . The homotopy inverse Q−1 is then defined as the inverse of Q on VT and
extended to be zero everywhere else.

The decomposition of any trivalent graph follows the same pattern. Thus, the pair
Q−1 and ∗ together with the symplectic form are sufficient to describe the tree-level
scattering of any number of spinless particles. We note that the moduli space of
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such labeled trees has no boundary since any two trees in Fig. 2.2 smoothly cross
into each other when the affine parameter τ approaches 0. On the other hand, this
decomposition is not unique. For instance, we could require that the affine parameter
has to be larger than some value ε, say. This is equivalent to adding a piece of
propagator of length ε to each leg of the cubic vertex. This new cubic vertex defines
a product lε2 : V ⊗ V → V , related to ∗ through

lε2(a, b) = eH ε
(
(e−H ε a) ∗ (e−H ε b)

)
. (2.28)

Note though that the composition of two binary products lε2(l
ε
2(a, b), d) still

vanishes trivially due to the nilpotency of the ghost c. However, it is already clear
from Fig. 2.2 that we need to introduce a four-vertex in order to reproduce the correct
4-point amplitude. Indeed, the zero-length propagator s-, t-, and u-channel trees do
not touch anymore and we therefore need to add a quartic vertex

f ε
4 (ψ4, ψ3, ψ2, ψ1) = 〈lε2(ψ4, ψ3), b e

−2εH lε2(ψ1, ψ2)〉 + (perm.) .

Using again the identity

ω(lε2(a, b), c) = (−1)|a|+|b|+1〈lε2(a, b), c〉
= (−1)|a|+1〈a, lε2(b, c)〉 = −ω(a, lε2(b, c)) ,

we can rewrite the latter formula as

f4(ψ4, ψ3, ψ2, ψ1) = ω(ψ4, l
ε
2(ψ3, b0 e

εH lε2(ψ2, ψ1))) (2.29)

+ω(ψ4, l
ε
2(ψ1, b0 e

εH lε2(ψ2, ψ3)))

+ω(ψ4, l
ε
2(ψ2, b0 e

εH lε2(ψ3, ψ1)))

≡ ω(ψ4, l3(ψ3, ψ2, ψ1)) .

The triple product l3 is trivially Q-closed,

[Q, l3] ≡ Q ◦ l3 + l3 ◦ (Q⊗ 1⊗ 1)+ l3 ◦ (1⊗Q⊗ 1)+ l3 ◦ (1⊗ 1⊗Q) = 0 ,
(2.30)

again due to the nilpotency of c. As a consequence, the BV action for three-vertices
with stubs is obtained simply by adding the quartic vertex to (2.16).

Of course, once a four-vertex is introduced this will imply a five-vertex upon
substitution into a tree with 5 legs and so forth so that eventually we will end up
with an infinite set of vertices, or maps {lεn}, with relations of the form given in
(2.30).
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Remark 2.7 It turns out that this procedure of adding stubs to the vertices has a
familiar physical interpretation in terms of a tree-level Wilsonian effective action.
Indeed, adding an infinitesimal stub of length ε to the cubic vertex is the same
as inserting a momentum cut-off in the propagators since the values of p2 =
g−1(p, p) >> 1

ε
are exponentially suppressed. Thus, the contribution from

large momenta to the scattering amplitudes are contained in the higher vertices
{lεn, n = 3, 4, . . .}. At order ε the effective action so obtained contains a four-vertex.
At order ε2 a quartic as well as a quintic vertex is produced. We can repeat this
procedure until all momenta of the internal propagators are integrated out. The
resulting effective action has no propagators left and therefore has the physical
interpretation of a generating function for scattering amplitudes. We denote the
corresponding maps by {sn}.

The algebraic counterpart of this procedure, the minimal model theorem, which
for the model at hand states that, given a dg-algebra (V , ∗,Q), there exists a quasi-
isomorphism2 F from (H, {sn}) to (V , ∗,Q), which induces an isomorphism on the
physical subspace contained in the cohomology H . Furthermore the maps {sn} are
just the matrix elements of the scattering matrix of physical states.

There is a simple and intuitive procedure to obtain the minimal model map by
constructing a perturbative solution to the equation of motion derived from the
action (2.16). To begin with we split the field ψ into a “physical” state Pψ = ψP ∈
H and its complement ψU + ψT in VU ⊕ VT . The subspace VU corresponding to
the projection map PU = −Q−1Q represents the nonphysical states, i.e., the states
not annihilated by Q, and the subspace VT represents the space of trivial states, i.e.,
Q-exact states. We can then consistently set ψT = 0 and solve for ψU starting from
the equation of motion for ψ . Since QψP = 0 by construction, we have

QψU = −ψ ∗ ψ . (2.31)

Acting on this equation with Q−1 we get

ψU = −Q−1((ψP + ψU) ∗ (ψP + ψU)
)

(2.32)

= −Q−1(ψP ∗ ψP
)+Q−1(Q−1(ψP ∗ ψP

) ∗ ψP
)

+Q−1(ψP ∗Q−1(ψP ∗ ψP
))
,

up to terms of order four and higher. This gives a perturbative expression for ψU

in terms of ψP which satisfies (2.31) up to an element in the kernel of Q−1.
Substituting the right-hand side of (2.32) into (2.31) and using (2.26) as well as
Q2 = 0 we find

P
(
(ψP + ψU) ∗ (ψP + ψU)

) = 0 , (2.33)

2Cf. Remark 2.10 in Sect. 2.3 concerning the use of the term minimal model in the world of cyclic
homotopy algebras.
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which upon expanding ψU in terms of ψP using (2.32) produces an obstruction for
ψP to give a solution to (2.32). This obstruction is of the form

∑
k≥2

sk(ψ
P , . . . , ψP ) = 0 , (2.34)

which is a Maurer–Cartan equation for ψP . On the other hand, upon inspecting the
first few terms in (2.33), that is,

s2(ψ
P ,ψP ) = P(ψP ∗ ψP ) ,

s3(ψ
P ,ψP ,ψP ) = −P

[(
Q−1(ψP ∗ ψP

) ∗ ψP
)+ (ψP ∗Q−1(ψP ∗ ψP

))]
,

and recalling that Q−1 is the propagator, we see that

〈ψP , s2(ψ
P ,ψP )〉

is the scattering matrix for a three-particle scattering (which usually vanishes for the
kinematical reasons), while

〈ψP , s3(ψ
P ,ψP ,ψP )〉

is the scattering matrix for a four-particle scattering. It is not hard to see that this
identification holds for an arbitrary power of ψP . To summarize, the maps sn which
are defined on the cohomology H can be interpreted as the scattering matrices for
an n+1 particle scatterings. Equation (2.32)3 induces a nonlinear map F : H → V .
Explicitly, let SV be the symmetric algebra

SV =
∞⊕
n=0

(V⊗n)sym,

where V⊗0 = C and similarly, SH the symmetric algebra on H . Then we can write

ψ = F(ψP ) = ψP + ψU = π1(1−Q−1∗)−1(eψ
P − 1)

= ψP −Q−1(ψP ∗ ψP )+Q−1(Q−1(ψP ∗ ψP ) ∗ ψP )+ · · · ,

where π1 : SV → V denotes the projection on one output. Similarly, we have

sn = P π1 ∗ (1−Q−1∗)−1in , (2.35)

3Here we are somewhat cavalier about the proper notion of embedding of ψP in V .
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where in : (H⊗n)sym → SH is the inclusion map. It is then not hard to see that F
is a chain map, that is,

(Q+ ∗)F = FS , (2.36)

where S =∑∞
n=0 sn. Furthermore, (Q+∗)2 = 0 due to (2.17) and similarly S2 = 0.

We will use the same symbol for the induced morphism of the underlying algebraic
structures, i.e., we will write F : (H, {sn}) → (V ,Q, ∗). Let us note that F also
respects the cyclic structure, i.e.,

F ∗ω = ωH , (2.37)

with F ∗ denoting the pullback of F . In this sense, we actually have an induced
morphismF : (H, {sn}, ωH )→ (V ,Q, ∗, ω) of the underlying algebraic structures
including also the respective odd symplectic forms.

Remark 2.8 We can also express the minimal model theorem directly in terms of
the BV action. We take the BV vector field Q = {S,−} in (2.18) and expand it
in the formal neighborhood [φ0] around a point φ0 in the degree 0 subspace of the
space of fields F

Q
form= Q

(0)
φ0
+Q

(1)
φ0
+Q

(2)
φ0
+ · · · .

If φ0 is an element of the Euler–Lagrange subspace EL (i.e., the space of classical
solutions) of F , then Q

(0)
φ0

vanishes and the set {Q(k)
φ0
, k > 0} defines degree one

vector fields on Tφ0F . In our example with φ0 = 0,

Q
(1)
0 = ωijφkω(ek,Qei)∂φj ,

Q
(2)
0 = ωijφkφrω(ek, er ∗ ei)∂φj .

More generally, if we restrict the neighborhood [φ0] to be in EL /Q, then the {Q(k)
φ0
}

define linear maps

Q
(k)
φ0

= φi1 · · ·φik li i1···ik ∂φi : Tφ0F → S(Tφ0F ) .

These maps are dual to the multilinear maps {ln} defined above, that is,

ln(ei1, . . . ein) = li i1···in ei .

Furthermore, the collection {Q(k)
φ0
} induces the Maurer–Cartan equation (2.34) onH .
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Remark 2.9 One might worry that, since the action (2.16) was constructed such
as to reproduce an n-particle scattering in a specific background, the whole
construction may not be background independent . That this is not so follows from
the observation that the definition of Q in (2.10) is universal, i.e., independent of ψ .
In fact, the presentation of the ψ3-field theory in this section is “reversed.” Indeed,
the usual starting point is the action (2.16), which is background independent
and one then derives the scattering amplitudes (2.15). However, we chose this
presentation for pedagogical reasons as will hopefully become clear in sections on
string field theory.

Although we have elaborated here on the simple example of a point particle with
the trivial ghost and gauge sectors, most of the algebraic structure discussed in this
section will hold for a generic BV theory and in particular for string field theory. One
important modification is that, due to the non-trivial gauge structure of the string,
the nilpotent algebras we encountered for the point particles will be replaced by
homotopy Lie- or associative algebras which will be the relevant algebraic structure
for the string.

2.3 Summary, Comments, and Remarks Towards Part II

The path integral (2.11) has an interpretation as a symmetric monoidal functor E
from the one-dimensional bordism category to the category of vector spaces. This
functor associates to a point ∗ the Hilbert space E(∗) = V of functions on the
“mapping” space {∗ → M×R0|1} = M×R0|1, where R0|1 is the odd line generated
by the ghost c. The functional integral associates to a bordism (intervalΔτ ) between
two points a map V → V through the integration of the kernel K(Δτ, φ1, φ0)

against the wave functionsψ(φ0, c). We will not elaborate on this point of view any
further.

The point we wished to elucidate here is that the space V naturally carries the
structure of a nilpotent abelian differential graded (dg) algebra (V , ∗,Q) equipped
with an invariant odd symplectic form ω. In addition,

S[ψ] = 1

2
ω(ψ,Qψ) + 1

3
ω(ψ,ψ ∗ ψ) (2.38)

defines a BV action on V , i.e., it satisfies the classical BV master equation {S, S} =
0. Equivalently, (Q+∗)2 = 0. Furthermore, with ψ = f0+f1c, f0 of degree 0 and
f1 of degree−1, we have

ψ ∗ ψ = cf0f0 , Qψ = 1/2c(�+m2)f0 and 〈ψ,ψ ′〉 =
∫
M

f0f
′
1 + f ′0f1 .
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In particular, f1 is the anti-field corresponding to f0. Finally, we see that

S =
∫
M

1

2
f0(�+m2)f0 + 1

3
f 3

0 .

Not surprisingly, what we described in a rather involved way is the ordinary scalar
field theory with cubic interaction and no gauge symmetry. The action S satisfies
BV master equation trivially, there are no anti-fields in the action.

Nevertheless, it may prove useful to extend an ordinary field theory to a BV
one trivially just adding the anti-fields as above. Many concepts useful in quantum
field theory, e.g., Schwinger–Dyson equations, Ward identities, etc., have their
conceptual origin in BV formalism.

As already mentioned in the introduction, classical BV actions arise naturally
from representations of the cobar construction on cyclic operads. The n-valent
interaction vertices in the BV action correspond to (n − 1)-ary degree one
operations (brackets, products, etc.) of the corresponding homotopy algebras. This
will thoroughly be described in Part II. Concerning our case of the point particle, the
relevant operad is the cyclic commutative operad. The corresponding cyclic L∞-
algebra has all higher brackets trivial, the binary (graded symmetric degree one)
bracket is the one given by ∗, which is just the result of the ordinary (graded)
commutative point-wise product multiplied by the ghost c. Similarly, in a trivially
BV extended quantum field theory, all higher brackets will be given by the powers
of the ordinary product cψn, which can be seen as generated by the binary one, see,
for example, (2.29).

The physical scattering amplitudes of n identical particles are evaluated by
drawing all inequivalent labeled and directed trees with n inputs and one output
as in Fig. 2.2 constructed from the cubic vertex which defines the commutative
product of differential graded algebra (V , ∗,Q) underlying the action functional
(2.38). Two trees are equivalent if they are obtained by permutation of two labels at
the same vertex. Each internal line between two vertices represents the insertion of
a “propagator” 1

i
Q−1. The physical amplitude is then given by evaluation with the

symplectic form. For instance, for the scattering (1, 2, 3 → 4) the trees are given in
Fig. 2.2 with the resulting physical amplitude

1

i
ω(ψ4, ψ3 ∗Q−1(ψ1 ∗ ψ2))+ 1

i
ω(ψ4, ψ1 ∗Q−1(ψ3 ∗ ψ2))

+ 1

i
ω(ψ4, ψ2 ∗Q−1(ψ3 ∗ ψ1)) .

This construction of tree-level scattering amplitudes for the relativistic scalar
particle is the physical equivalent of the construction of the minimal model on the
Q-cohomology H for cyclic L∞-algebras.

Remark 2.10 To give, in our setting of cyclic homotopy algebras, a sensible
meaning to the term “minimal model,” we would like to interpret the map (2.35)
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as a morphism from the cyclic L∞-algebra (H,ω|H , S) on the cohomology H to
the originalL∞-algebra (V , ω,L). Formulas (2.36) and (2.37) suggest one possible
definition of a morphism in a category of cyclic L∞-algebras as a map (in general a
nonlinear one) between the underlying vector spaces compatible with the respective
cyclic L∞-structures. Obviously, a map respecting symplectic structures might
seem to be a too restrictive one, the dimension of the source vector space cannot be
bigger than that of the target vector space. A possible way out would be to consider
Lagrangian correspondences instead of maps. We will not need this generalization.
Hence, we will not comment on this any further.

The minimal model defined on the subspace of physical states is then quasi-
isomorphic to the L∞-algebra defined by the original action S on the space of
all states. Formula (2.35) for the tree-level scattering amplitudes/brackets of the
minimal model is the content of the homological perturbation lemma. It expresses
the change of the trivial differential on functions on the Q-cohomology H induced
by the perturbation of the BRST operator Q by the product ∗ on functions on V .

Finally, we would like to comment on the relation to the operadic formulation
of cyclic L∞-algebras in Part II of this book. The maps ln or equivalently, their
duals Q(k)

φ0
and indeed, the classical BV action S, define a cyclic L∞-algebra. This

is an algebra over the cobar construction of the cyclic commutative operad briefly
recalled at the beginning of Sect. 7.2 in Part II. The minimal model construction,
when expressed by formula (2.35), applies directly to any algebra over the cobar
construction of a general cyclic operad and even more generally to any algebra over
the Feynman transform of a general modular operad. In the form presented here
it also applies to representations of cobar constructions of properads and hence, in
particular, to IBL∞-algebras.

Further Reading

An intuitive pedagogical account of the quantization of the relativistic point particle
can be found in:

• A. M. Polyakov, “Gauge fields and strings”, Harwood, 1987.

A standard reference for BRST and BV quantization is:

• M. Henneaux and C. Teitelboim, “Quantization of gauge systems”, Princeton
University Press, Princeton 1992.

Other useful references include:

• S. Weinberg, “The quantum theory of fields Vol. II”, Cambridge University Press,
2005,
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• J. Gomis, J. Paris and S. Samuel, “Antibracket, antifields and gauge-theory
quantization, Physics Reports”, Volume 259, 1995, and

• M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, “The geometry
of the master equation and topological quantum field theory”, Int. J. Mod. Phys.
A 12, 1405 (1997),

or, for a more mathematically minded reader,

• A. Cattaneo and N. Moshayedi, “Introduction to the BV-BFV formalism”,
arXiv:1905.08047.

Although we do not pursue this avenue in this book, it is possible to formulate
Yang-Mills theory and gravity on the world-line with (extended) world-line super-
symmetry, see:

• P. Dai, Y. Huang and W. Siegel, “Worldgraph approach to Yang-Mills amplitudes
from N = 2 spinning particle”, JHEP 0810 (2008) 027

for Yang-Mills theory, and

• R. Bonezzi, A. Meyer and I. Sachs, “Einstein gravity from the N = 4 spinning
particle”, JHEP 1810, 025 (2018)

for gravity. There are many textbooks explaining the diagrammatic evaluation of
scattering amplitudes. A popular reference for physicists is:

• M.E. Peskin and D.V. Schroeder, “An introduction to quantum field theory”,
Westview Press, 2015.

The minimal model construction as a direct application of the homological pertur-
bation lemma is discussed in:

• M. Doubek, B. Jurčo and J. Pulmann, “Quantum L∞-algebras and the homolog-
ical perturbation lemma”, Commun. Math. Phys. 367(1), (2019) 215–240.
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A natural 1-dimensional generalization of the point particle is its blow-up into an
open or closed string, cf. Fig. 3.1. It turns out that both possibilities are meaningful
and, in fact, at quantum level the former implies the latter. The action for the open
string turns out to be structurally very similar to that of the point particle described
in the previous chapter. Indeed, one can show that the action (2.16) with suitably
defined (ω,Q, ∗) corresponds to a decomposition of the moduli space of bordered
Riemann surfaces with punctures on the boundary. For the closed string, however,
this is not the case and an infinite number of higher order vertices has to be added
to (2.16). In this chapter we will describe some features of string theory relevant for
the rest of this book. For more details we refer to the original literature listed at the
end of the chapter.

3.1 Closed Strings

Let us start with a one-dimensional generalization of the world-line action (2.1)

I [φ, h] = 1

4πα′

∫
Σ

g(dφ,∧∗dφ) , (3.1)

where now φ : Σ → M , while Σ is topologically a cylinder equipped with
a pseudo-Riemannian world-sheet metric. However, in order to have a well-
defined measure on the space of world-sheets we consider the Wick-rotated, or
Riemannian world-sheet metric h. This is in analogy with the discussion after (2.24).
Furthermore, 1/α′ is the string tension which sets the unit for the masses of the
excitations of the string. In what follows, we work in units where α′ = 1 since we
are not interested in the particle limit (α′ = 0), nor the tensionless limit (α′ = ∞)
where all excitations are massless.

© Springer Nature Switzerland AG 2020
M. Doubek et al., Algebraic Structure of String Field Theory, Lecture Notes
in Physics 973, https://doi.org/10.1007/978-3-030-53056-3_3
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Fig. 3.1 Closed and open
string

The constraint equation obtained upon varying this action with respect to h now
reads T φ

ab = 0, where

T
φ
ab = − 4π√

h

δI [φ, h]
δhab

(3.2)

is a symmetric and traceless world-sheet (stress) tensor.

Remark 3.1 The world-sheet stress tensor is traceless, since the diagonal part
of h does not appear in S. However, the absence of anomalies for this “Weyl
invariance” implies strong conditions on the manifold M . We will assume that M is
of dimension 26 equipped with a flat metric to avoid this complication.

In analogy with the point particle, the Faddeev–Popov procedure takes care of the
redundancy, due to the world-sheet diffeomorphism invariance of (3.1) generated by
the vector field ξ ,

δφ = −[ξ, φ] , δh = −Lξh .

The resulting gauge-fixed Euclidean evolution kernel is then given by

Z(h, φf , φi) =
∫ φ∂Σf =φf

φ∂Σi=φi
D[φ, b, c] e−I [φ,b,c,h] , (3.3)

where φf/i are maps from the boundary components ∂Σf/i to M and

I [φ, b, c, h] = 1

4π

∫
Σ

g(dφ,∧∗dφ)− i

2π

∫
Σ

√
h b s

r ∇s c
r dτdσ . (3.4)

Here ∇ is the covariant derivative compatible with the metric h on the world-sheet.
Geometrically, c is an odd vector field on Σ while b is an odd, symmetric traceless
tensor. The residual BRST symmetry is (with ξ →−ic)

δBRST φ = i[c, φ] , δBRST b = iT , δBRST c = i

2
Lcc , (3.5)

where T = T φ + T g, with T φ given in (3.2) and T g = Lcb is the stress tensor of
the ghost sector. The extra factor of i missing in (2.7) is due to the Wick-rotation
discussed above. This is the appropriate one-dimensional generalization of (2.6)
and (2.7).
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Fig. 3.2 The unit disk with
Ψ (0) inserted at the origin
where, more generally,
ψ(P ) ≡ ψ(φ(P ), ∂zφ(P ), . . .)

Ψ(0)

To complete the construction, we should provide a generalization of the vector
space V . Since the path integral measure in (3.3) is invariant under conformal
mappings that map τ = −∞ to the origin of the complex plane, we can
define a vector space spanned by polynomials in the fields and their derivatives
ψ(φ, b, c, ∂zφ, . . .) inserted at the origin of the complex plane. A convenient way to
parametrize the vectorψ goes as follows. Let {φ̄, b̄, c̄} : ∂D → M be the restriction
of the maps {φ, b, c} to the boundary of the unit disk. We then evaluate the path
integral measure in (3.3) on the unit disk with Euclidean metric ds2 = dzdz̄ subject
to the boundary condition {φ̄, b̄, c̄} and ψ(φ, b, c, ∂zφ, . . .) inserted at the origin of
the disk, cf. Fig. 3.2. Concretely,

ψ(φ̄, b̄, c̄) =
∫
{φ,b,c}|∂D={φ̄,b̄,c̄}

D[φ, b, c] e−I (φ,b,c,h)ψ(0) . (3.6)

It turns out that there is some redundancy in this representation due to the invariance
under reparametrizations of the circle |z| = 1. These are generated by the vector
fields ξn = einθ ∂θ that generate the Lie algebra of Diff(S1). Consequently, the
vectors {ψ} should transform in a representation of Diff(S1), i.e. they transform
as tensors of homogeneous degrees. This important structural difference against the
point particle described in the previous chapter gives rise to an infinite dimensional
gauge redundancy in string theory. The vector fields ξn can be continued as
mereomorphic vector fields inside the disk as

iξn = z1+n∂z − z̄1−n∂z̄ ≡ Ln − L̄−n .

The vector fields Ln so defined realize the familiar Witt or Virasoro algebra with
non-vanishing commutation relations

[Ln,Lm] = (n−m)Ln+m , [L̄n, L̄m] = (n−m)L̄n+m , n ∈ Z .

This is just a double copy of the Lie algebra of Diff(S1). We assume the cen-
tral extension to be absent due to anomaly cancelation in 26 dimensions (see
Remark 3.1).
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In the operator formalism one starts with a classical solution (critical points of
(3.4)) given by mereomorphic functions with an expansion

i∂zφ
μ(z) =

∑
n∈Z

α
μ
n

zn+1
, c(z) =

∑
n∈Z

cn

zn−1
, b(z) =

∑
n∈Z

bn

zn+2

i∂z̄φ
μ(z̄) =

∑
n∈Z

α̃
μ
n

z̄n+1 , c̃(z̄) =
∑
n∈Z

c̃n

z̄n−1 , b̃(z̄) =
∑
n∈Z

b̃n

z̄n+2 .

where μ = 1, . . . , 26 refers to the Cartesian coordinates on R26. To continue, one
can either postulate the algebra

[αμn , ανm] = ngμνδn,−m , [bn, cm] = δn,−m ,

where gμν are the components of the inverse of the metric tensor g on R26 and
[−,−] denotes the graded commutator or, equivalently, start from the operator
product expansion

i∂φ(z)i∂φ(w) � 1
(z −w)2

+O((z− w)0) , b(z)c(w) � 1
(z −w)

+O((z−w)0)

to derive this algebra. In analogy with the point particle, we assign ghost number one
to c and c̃, minus one to b and b̃ and zero to φ. For the point particle we identified the
ghost number with the degree, whereas for the string we define the degree as deg ≡
ghost number-2 for consistency with the standard convention in the BV formalism.
In the operator formalism ∂z and ∂z̄ are represented by T (z) and T̄ (z̄), respectively,
that is,

Ln =
∮

dz

2π
zn+1T (z)

and analogously for L̄n.
With this V acquires the structure of a Fock space where the vacuum state |0,k >

corresponds to the insertion of ψ = eikμφ
μ

at the origin of D,

αμn |0,k >=
∮

dz

2π
zn∂zφ

μ(z)ψ(0)

and analogously for ∂z̄φ, b, b̃, c, and c̃. In particular, αμn |0,k >= 0 for n > 0.
There is a canonical inner product on V , the BPZ inner product, obtained through
the gluing of two disks along the boundary at |z| = 1 with the opposite orientation,
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that is

〈ψ1, ψ2〉 :=
∫

D[φ, b, c]ψ̄1[φ, b, c]ψ[φ, b, c]

= lim|z|→0

〈
(I∗ψ1)(z, z̄)ψ2(z, z̄)

〉
, (3.7)

where I (z, z̄) = (1/z, 1/z̄) and I∗ψ is the pullback of ψ .
Next we turn to the BRST charge Q. Given the algebraic structure described

above, it is easy to show that the BRST transformations (3.5) are generated by

Q =
∮

dz

2πi
c(z)

(
T φ(z)+ 1

2
T g(z)

)
+
∮

dz̄

2πi
c̃(z̄)

(
T̄ φ(z̄)+ 1

2
T̄ g(z̄)

)
.

The mode expansion of Q is of the form

Q = c+0 L
+
0 + c−0 L

−
0 + · · · , c±0 = 1

2
(c0 ± c̃0) .

Proceeding as in (2.9), we choose the ghost vacuum so that

b−0 ψ(φ, b, c, ∂zφ, · · · ) = 0.

The physical subspace Vphys should then be given by the semi-relative cohomology
coh(Q, b−0 ) (i.e., by the cohomology restricted to the kernel of b−0 ) at ghost number
2. In the Siegel gauge , b+0 ψ = 0, Vphys is then represented by the set of physical
states found in the standard textbook presentation.

In order to ensure unitarity, that is the positivity of the inner product on the
cohomology, it is necessary that pure gauge, i.e. a Q-exact state, has a vanishing
inner product (3.7) with physical states. This amounts to the condition

Lnψ(φ, b, c, ∂zφ, · · · ) = L̄nψ(φ, b, c, ∂zφ, · · · ) = 0 , n ≥ 0 . (3.8)

Algebraically, (3.8) states that ψ(z, z̄) is a conformal primary field of dimension
zero,

T (z)ψ(w, w̄) � 1

(z−w)2
ψ(w, w̄)+ 1

z−w
∂wψ(w, w̄)+O((z−w)0)

and analogously for T̄ (z̄). Geometrically, the on-shell condition expresses the fact
that physical states ψ(φ) are invariant under holomorphic reparametrizations of the
disk that preserve the origin. Generic states will not be conformal primaries but they
should still be invariant under rotations of the disk which is equivalent to

(L0 − L̄0)ψ(φ, b, c, ∂zφ, · · · ) = 0.
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To understand the geometric origin of the ghost number 2 condition, we return
to the inner product (3.7). A more careful inspection of (3.7) reveals that the
correlation function 〈. . . 〉 is zero unless we saturate it with three c-ghost and three
c̃-ghost insertions, in other words, the correlator 〈. . . 〉 has ghost number −6. These
ghost zero modes correspond to the vector fields that generate the action of the
automorphism group SL(2,C) of S2. Since they leave the reference metric dzdz̄

invariant, they play no role in the gauge fixing procedure. This is why they show
up as zero modes of the ghost action. On the other hand, the punctures of the two
ψ-insertions are not invariant. One way to take care of this is to attach each insertion
of ψ to a cc̄-pair. This is equivalent to restricting gauge fixing to diffeomorphisms
that preserve the insertion point. Thus, an equivalence class ψ of physical states has
a representative of the form

ψ(0) = ψ(φ(0), ∂zφ(0), . . .)c(0)c̄(0) .

This takes care of four ghost zero modes in (3.7). Nonphysical states, on the other
hand, do not correspond to conformal primaries, as we have already mentioned,
therefore they depend not just on the position of the operator, but also on the
holomorphic reparametrization of the disk. Consequently, such states may involve
arbitrary polynomials of derivatives of the ghost fields.

The two remaining zero modes correspond to rotation and scaling of the unit
disc, respectively. We have encountered the latter already for the point particle and
it corresponds to time translation generated by Q, whereas the former is simply
redundant due to the constraint L−0 = 0. Furthermore, using b

†
0 = b0, one easily

checks that the inner product 〈ψ1, ψ2〉 is degenerate on states containing b−0 . To
remedy this using [b−0 , c−0 ] = 1, we redefine the inner product as

Ω(ψ1, ψ2) := 〈ψ1, c
−
0 ψ2〉 .

Due to the c−0 -insertion, Ω is graded anti-symmetric,

Ω(A,B) = (−1)(|A|+1)(|B|+1)Ω(B,A) .

Furthermore,Ω(QA,B) = (−1)|A|Ω(A,QB). Now we have all necessary tools to
write down the quadratic action for the closed string field. It is simply

S[ψ] = 1

2
Ω(ψ,Qψ) . (3.9)

Just like the point particle, the string has a propagator, that is a homotopy inverse
for Q, which we denote by Q−1. In order to define it, repeating the steps in
Remark 2.6, we fix the gauge, which amounts to fixing a representative for every
element of the cohomologyH . More precisely, the gauge fixing determines a map

i : H → V ,
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which sends an element of the cohomology to its representative. We will call i the
inclusion map. We also have the projection

π : V → H .

Obviously, the map P := i ◦ π : V → V satisfies P 2 = P and the image VP of P
is isomorphic to H . This means that VP represents the physical states. Moreover P
is a chain map, i.e. PQ = QP = 0 and it induces the identity map on cohomology.
This implies that P is homotopic to 1, i.e. there is a map Q−1 : V → V such that

P − 1 = Q−1Q+QQ−1 .

Note that P 2 = P implies (Q−1)2 = 0. Physically we can identify Q−1 as the
propagator corresponding to the chosen gauge. We demand Q−1P = PQ−1 = 0,
which means that we set the propagator to be zero on the space of physical states.
The subspace VU corresponding to the projection map PU = −Q−1Q represents
the nonphysical states, i.e. the states not annihilated by Q, and the subspace VT
represents the space of trivial states, i.e. Q-exact states. To summarize, choosing a
gauge in SFT determines a harmonious Hodge decomposition (compatible with the
odd symplectic form), which decomposes the state space into physical, nonphysical,
and trivial states. In Siegel gauge b+0 ψ = 0 we have

Q−1 = b+0
L+0

(1− P) .

3.2 Interactions

In order to work out the higher order corrections to the string action (3.9), we could
proceed, as for the point particle in Chap. 2, by considering the propagation of
a string in the background field corresponding to some external state ψ . In this way
one obtains a prescription for calculating scattering matrix elements. However, from
the point of view of string field theory, it is easier to just consider the geometrical
vertex that describes the joining of two strings as in Fig. 3.3.

If we remove the free propagation of the external strings, we are left with a 3-
punctured sphere with coordinate curves homotopic to the punctures, where the
external states can be inserted by identifying the boundary of the unit disk of Fig. 3.2
with the coordinate curve. There is a phase ambiguity which corresponds to the

Fig. 3.3 Merging of two
strings
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Fig. 3.4 Contact vertex for
three strings

Fig. 3.5 A tetrahedron
describing the scattering of
four strings

rotation of these curves around the puncture. Due to the restriction b−0 ψ = L−0 ψ =
0, ψ ∈ V , this prescription is well defined.

Let us first consider a contact interaction for 3 strings. Without loss of generality,
we can assume that each of the three external strings has circumference 2π . The 3-
string vertex, denoted by ν3, can be represented by a 2-sphere with three semicircles
from the north to the south pole at the relative angle of 2π/3 as in Fig. 3.4.

This defines a symmetric product on V upon gluing of the three semicircles with
the boundaries of the disks used for representing the respective states as in (3.6).
For the point particle, this vertex already provides a consistent action as we saw in
Chap. 2. However, for the string that cannot be so as can be seen by examining the
four-point vertex represented by a spherical tetrahedron in Fig. 3.5 subject to the
condition that the boundary of each face has length 2π (four equations).

Since the tetrahedron has six edges, we are left with two variables which in
turn parametrize the moduli space P̂4 of 4-punctured spheres together with the
corresponding coordinate curves around each puncture. The solution to the four
constraint equations is best represented by a tetrahedron with opposite edges of
equal length a, b, and c, respectively, see Fig. 3.5, subject to the constraint

a + b + c = 2π . (3.10)

Solutions to this constraint give a parameterization of the relevant moduli space
for four punctures. It is easy to see that not all of the moduli space can be covered by
joining two cubic vertices with a closed string propagator represented by an internal
cylinder of circumference 2π . Indeed, the tetrahedron obtained in this way, in the
limit of a collapsing propagator, has two edges with length π , see Fig. 3.6.

The result is that by joining two cubic vertices in all possible, nonequivalent
ways with a propagator of positive or vanishing length, one covers the part of the
moduli space of the 4-vertex satisfying (3.10), which is the complement to the subset
parametrized by (3.10) subject to the condition a, b, c < π . Gluing two cubic
vertices in all possible, nonequivalent ways gives the boundary of that region. In
order to cover the whole moduli space one needs to add an elementary four-vertex
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Fig. 3.6 A typical 4-point
vertex obtained by joining
two cubic vertices with a
zero-length propagator. The
edge a has length π

ν4 as in Fig. 3.5 with a, b, c < π . This result can be cast into the form of a geometric
BV equation

∂ν4 + 1

2
{ν3, ν3} = 0 , (3.11)

which expresses the fact that, after a suitable compactification, the moduli space for
four punctures built from vertices and propagators has no boundary. Here ∂ is the
boundary operator, that is, ∂ν4 is the restriction of ν4 to the subset where one of the
edges has length π . The bracket {−,−} stands for the twist-sewing of punctures of
the two cubic vertices by identifying the local coordinate z around the first puncture
with that around the second puncture through z′ = I (z) = 1/z.

The twist-sewing comes about as follows. There is an ambiguity of determining
local coordinates of coordinate curves parametrized by an angle θ ∈ [0, 2π),
representing all possible rotations. Thus, the sewing of punctures with prescribed
coordinate curves naturally generates a 1-parameter family of Riemann surfaces
associated with the twist angle θ in local coordinates. The resulting vertex is
subsequently symmetrized with respect to the remaining punctures of the combined
surface. Of course, this will not stop at the four vertex. For the same reason there
will be a quintic vertex, etc. In contrast to the point particle, closed string field
theory is necessarily non-polynomial, with only the first few of these vertices
known explicitly.

We will describe the geometric structure of this decomposition in more detail
below but before that we discuss how to dress this geometric structure with
physical states. For the cubic vertex in Fig. 3.4 this is done, as mentioned above,
by identifying the round disk used for representing the state in (3.6) with the faces
of the cubic vertex through a conformal mapping in such a way that the origin is
mapped to the puncture and the boundary of the disk is mapped to the two edges
of the face. In this mapping there is a one parameter ambiguity corresponding to
a rotation of the boundary but, as we saw, this has the trivial action on V . In this
way we obtain a cubic field theory vertex f̂3 and a bilinear, graded symmetric map
l̂2 : V ⊗ V → V through

Ω(ψ1, l̂2(ψ2, ψ3)) := f̂3(ψ1, ψ2, ψ3) .
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Similarly, for the elementary four-vertex one has

Ω(ψ1, l̂3(ψ2, ψ3, ψ3)) := f̂4(ψ1, ψ2, ψ3, ψ4),

where the maps l̂n : V ⊗ V ⊗ · · · ⊗ V → V are graded symmetric, e.g. for n = 2,

l̂2(A,B) = (−1)deg(A)deg(B)l̂2(B,A).

The definition of f̂4 requires more care since it involves an integration over the
part of the moduli space covered by ν4 described above in (3.11). We will come back
to this in more generality in Sect. 3.3. For now, let us just state that the world-sheet
conformal field theory provides a map from the set of geometric vertices {νk, k ≥ 3}
to the set of multilinear maps {l̂k, k ≥ 2}. In addition, ∂ 
→ Q will be explained in
Sect. 3.3. The correct generalization of the free, closed string action (3.9) is then
given by

S[ψ] = 1

2
Ω(ψ,Qψ) + 1

3!Ω(ψ, l̂2(ψ,ψ)) + 1

4!Ω(ψ, l̂3(ψ,ψ,ψ)) + · · · .

There are two apparent obstacles in interpreting this action as a BV action.
First, Ω has ghost number −5, while in the BV formalism one usually assumes
a degree −1 odd symplectic form. Second, the physical string fields have ghost
number 2, whereas in the BV formalism the physical fields are taken to have degree
0. Both of these issues can be resolved by defining the degree to be the ghost number
minus two, so that the classical closed string field is a degree zero element in1

V [−2] :=↓ 2V . To simplify the notation, we will denote V [−2] by V again when
there is no risk of confusion. The odd symplectic structure of closed string field
theory ω : V ⊗ V → C is then identified as

ω := Ω ◦ (↑2⊗ ↑2) = 〈−, c−0 −〉 ◦ (↑2⊗ ↑2) .

Due to the shift and the c−0 -insertion,ω is graded anti-symmetric and has degree−1.

Similarly, the maps ln are redefined as ln =↓2 ◦ l̂n◦ ↑⊗2n. With this convention the
maps ln all have degree 1.

As mentioned above, an important difference against the point particle involves
the gauge invariance which was trivial for the latter. At the linearized level,

δΛψ = QΛ

with Λ an arbitrary element in V of degree −1, will leave S[ψ] invariant since
Q2 = 0. Clearly, this gauge invariance is reducible due to Λ → Λ + QΛ′, where
Λ′ has degree−2, etc. This leads to ghosts for ghosts, etc. Luckily this complication

1See Appendix A.1 and Part II for the definition of ↑and ↓.
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will not affect us here, so we only refer the reader to the original literature listed at
the end of this chapter for further details on this issue. To the quadratic order, we
have the invariance under

δΛψ = QΛ+ l2(ψ,Λ)+ · · · ,

because ∂ν3 = 0 implies

[Q, l2](a, b) = Ql2(a, b)+ l2(Qa, b)+ (−1)deg(a)l2(a,Qb) = 0 . (3.12)

So far this looks as a Lie algebra type symmetry. However, since l3 does not
commute with Q as is evident from (3.11) due to the correspondence between
the geometric vertex ν4 and the operation l3, and the boundary operator δ and the
BRST operator Q, respectively, δΛψ will receive corrections. Indeed, we will see
in Sect. 3.5 that (3.11) implies

[Q, l3] + 1

2
[l2, l2] = 0 , (3.13)

where

[Q, l3](a, b, c) =Ql3(a, b, c)+ l2(Qa, b, c)+ (−1)deg(a)l3(a,Qb, c)

+ (−1)deg(a)+deg(b)l3(a, b,Qc)

and

[l2, l2](a, b, c) = l2(l2(a, b), c)+ (−1)deg(c)(deg(a)+deg(b))l2(l2(c, a), b)

+ (−1)deg(a)(deg(b)+deg(c))l2(l2(b, c), a) .

Thus (3.13) says that l2 satisfies the Jacobi identity only up to a Q-exact term,
i.e. we are dealing with a Lie algebra up to homotopy, or a homotopy Lie algebra.
The gauge invariance at cubic order is

δΛψ = QΛ+ l2(ψ,Λ)+ l3(ψ,ψ,Λ) (3.14)

and the invariant BV action up to quartic terms is given by

S[Ψ ] = 1

2
ω(Ψ,QΨ )+ 1

3!ω(Ψ, l2(Ψ,Ψ ))+ 1

4!ω(Ψ, l3(Ψ,Ψ,Ψ )) ,

where Ψ , restricted to degree 0, reduces to ψ but contains, in addition, fields of
different degrees. The gauge parameter Λ lives in the degree −1 component. The
gauge transformation (3.14) is generated by

δΛψ = {S,ψ} ,
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so that the consistency condition for S is the algebraic BV equation

{S, S} = 0 .

This is the stringy generalization of (2.16).
Before we return to the geometric BV equation, we would like to touch upon

the quantum corrections to the classical BV equation (3.11). The qualitatively new
feature here is the presence of loops, obtained by connecting two punctures of
the same vertex by a propagator. A generic Riemann surface appearing in this
way will not be a fundamental vertex since it is obtained through composition
of vertices with propagators. In the BV quantization of field theory such loops
generically produce what is usually called ultra-violet (UV) divergences arising
when the length of such a propagator shrinks to zero. These divergences have to
be regularized, for instance, by introducing a cut-off. If the theory in question is
renormalizable, there is a suitable redefinition of the vertices such that the cut-
off can be removed. In string theory the situation is different. Indeed, due to the
modular invariance of the world-sheet conformal field theory, the part of the moduli
space corresponding to a very short, collapsed handle, is equivalent, by a modular
transformation, to a region where this loop propagator is long. This feature is at
the origin of the UV-finiteness of string theory. One way of implementing this
feature in the decomposition of P̂g,n is to demand that any Jordan curve on the
punctured Riemann surface, not homotopic to a point, has length bigger or equal
2π . The length is measured with respect to the metric of minimal area for a Riemann
surface of genus g with n-punctures. This data together with the coordinate curves
homotopic to the punctures define the moduli space P̂g,n. Note that, according to
this prescription, the punctures are replaced by stubs of finite length.

One possible obstruction to this decomposition of the moduli space is that
connecting stubs by a propagator of a non-negative length does not cover (or
overcovers) the moduli space at genus g + 1 and n − 2 punctures. In this case,
inserting a propagator of zero length introduces an artificial boundary which needs
to be compensated by introducing an elementary vertex of genus g + 1 and n − 2
punctures that covers the missing region in the moduli space such that its boundary
cancels the one introduced by the zero-length propagator. Thus, we have to extend
the geometric BV equation (3.11), introducing an operation Δ that corresponds to
the twist-sewing of two punctures of the same vertex with a zero-length propagator.
We will write the corresponding BV equation as

∂νg+1,1 + h̄Δνg,3 = 0

∂νg+1,2 + h̄Δνg,4 = 0

∂νg+1,3 + h̄Δνg,5 + 1

2

∑
g1+g2=g+1

{νg1,2, νg2,2} = 0, etc.,
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where g denotes the genus of the geometric vertex and we introduced the expansion
parameter h̄ to keep track of the loop order. It turns out that the operations ∂,Δ, and
{−,−} satisfy the axioms of a BV algebra, namely

∂2 = 0

Δ2 = 0

∂Δ+Δ∂ = 0 ,

∂{ −, −} − {∂−, −} + { −, ∂−} = 0

Δ{−,−} − {Δ,−} + {−,Δ} = 0

{ν,μ} + (−1)(deg(ν)+1)(deg(μ)+1){μ, ν} = 0

(−1)(deg(ν)+1)(deg(ρ)+1){{ν,μ}, ρ} + cycl. = 0.

Here ν,μ, and ρ are geometric vertices and deg(ν) will be defined in the next
section. For instance, Δ2 = 0 follows from the fact that the sewing increases
dimensionality by one due to the twist angle, and that the chains are endowed with
an orientation.

3.3 Decomposition of theModuli Space

Let us now describe the decomposition of the moduli space P̂g,n more thoroughly.
The geometric vertices νg,n with labeled punctures are elements of a proper chain

complex C•(P̂g,n) endowed with an orientation.2 We will not go into details here.
The grading is defined by the co-dimension (therefore, we use upper index for the
chain degree)

deg(νg,n) = dim(Mg,n)− dim(νg,n) ,

where Mg,n is the moduli space of punctured Riemann surfaces of genus g with n

punctures; its dimension is 6g + 2n − 6. With this grading, the boundary operator
∂ has degree one. Furthermore, the twist-sewing defined in the last section induces
the operations

a•b : Ck1(P̂g1,n1+1)× Ck2(P̂g2,n2+1)→ Ck1+k2+1(P̂g1+g2,n1+n2) (3.15)

and

•ab : Ck(P̂g,n+2)→ Ck+1(P̂g+1,n) (3.16)

2See references in the section on Further Reading for details.
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of degree 1 on the complex of singular chains. Here a and b denote the punctures
that are being twist sewed.

We can implement the indistinguishability of identical particles already at the
geometric level by requiring the invariance under permutations of punctures. The
complex of chains that are invariant under permutations of punctures is denoted
by C•

inv(P̂g,n). The maps a•b and •ab can be lifted to operations on C•
inv(P̂g,n).

This gives rise to

{νg1,n1+1, νg2,n2+1} =
∑

σ∈uSh(n1,n2)

σ (νg1,n1+1 a•b νg2,n2+1),

where uSh(n1, n2) is the set of (n1, n2)-unshuffles, i.e. permutations σ ∈ Σn1+n2

such that

σ(1) < · · · < σ(n1) and σ(n1 + 1) < · · · < σ(n1 + n2),

and

Δνg,n = •abνg,n+2 .

It is possible to define a graded commutative, associative product of degree 0 on
the chain complex of moduli spaces of disconnected surfaces by the disjoint union
ν � μ of vertices. Alltogether,

(ν � μ) � ρ = ν � (μ � ρ) , ν � μ = (−1)|ν||μ|μ � ν , |ν � μ| = |ν| + |μ| .

With respect to this multiplication, Δ is a nilpotent second order derivation, i.e.

Δ2 = 0,

Δ(ν � μ � ρ)−Δ(ν � μ) � ρ−(−1)|ν|ν �Δ(μ � ρ)−(−1)(|ν|+1)|μ|μ �Δ(ν � ρ)
+Δ(ν) � μ � ρ + (−1)|ν|ν �Δ(μ) � ρ + (−1)|ν|+|μ|ν � μ �Δ(ρ) = 0 .

We recognize the structure of a BV algebra. The bracket {−,−} expressed in terms
of Δ through

{ν,μ} := (−1)|ν|Δ(ν � μ)− (−1)|ν|Δ(ν) � μ− ν �Δ(μ) ,

defines a Gerstenhaber bracket, also called an anti-bracket, with the properties

{ν,μ} + (−1)(|ν|+1)(|μ|+1){μ, ν} = 0 ,

(−1)(|ν|+1)(|ρ|+1){{ν,μ}, ρ} + cycl = 0 .



3.4 Measure, Vertices, and BV Action 41

Hence, our BV algebra has an underlying Gerstenhaber algebra equipped with the
bracket {−,−} and multiplication �.

The additional structure needed to ensure that the decomposition of the moduli
space P̂g,n does not produce an artificial boundary (or multiple covering) is a
boundary operator ∂ , together with the BV master equation

∂νg,n + 1

2

∑
n1≤n2;g1≤g2

{νg1,n1+1, νg2,n2+1} + h̄Δνg−1,n+2 = 0 (3.17)

where n = n1 + n2 and g = g1 + g2. This geometric decomposition of the moduli
space is manifestly background independent, in particular, independent of the choice
of a metric in M .

Remark 3.2 In string theory, the background dependence enters through the confor-
mal field theory morphism that maps this structure to the BV algebra of the physical
Hilbert space. As explained above, the Polyakov action on a given space-time
defines a conformal field theory. Its BRST quantization introduces the Faddeev–
Popov ghosts c and b. The resulting BRST symmetry is generated by a ghost number
one BRST differential Q. In contrast to the point particle discussed in the first
chapter, in string theory, the construction of Q depends crucially on the choice of a
background. For a generic choice of the metric g on M the path integral measure in
(3.3) fails to be conformally invariant so that the construction presented here cannot
be used.

3.4 Measure, Vertices, and BV Action

In order to complete the construction of the CFT morphism between the geometric
and algebraic BV structures, we need to construct a measure on P̂g,n. One way to
do this is by completing the set of BRST transformations (3.5) by

δBRST hab = δhab , δBRST δhab = 0 ,

where hab is the reference metric and δhab is a ghost number 1, traceless, symmetric
tensor. This extended set of BRST transformations is a symmetry of the evolution
kernel (3.3) provided we add the term

ΔI = 1

4πi

∫
Σ

√
h δhabb

ab dτdσ

to the action in (3.3). To continue, we consider the generating functional

FA (h, δh) =
∫

D[φ, b, c] e−I−ΔIA (φ, c), (3.18)
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where A (φ, c) is a polynomial in vertex operators obtained, according to the
operator-state correspondence, by gluing unit disks with the corresponding vertex
operators at their origin. These states may be off-shell and therefore vertex operators
are not assumed to be primaries. Now, if we let nc and nb be the number of c-ghost
zero modes and the number of b-ghost zero modes, respectively, we have, because
of the ghost number anomaly, that nb−nc = 6g−6. Consequently, upon expanding
(3.18) in δh we find that FA (h, δh) is a homogeneous function of degree at least
6g− 6 in δh which, due to the anticommuting nature of δh, will be seen to give rise
to a differential form on the space of complex structures J of a Riemann surface
Σg,n of genus g with n punctures. Furthermore, the exterior derivative of FA is just
the BRST differential

dFA =
∫
Σ

∑
a,b

δhab
δFA

δhab
= QFA . (3.19)

It is possible to show that FA (h, δh) is the pullback of a differential form on the
moduli space P̂g,n of punctured Riemann surfaces Σg,n together with a choice
of a coordinate curve around each puncture. Let Dp1,··· ,pn denote the group of
orientation-preserving diffeomorphisms that are trivial to all orders near the points
p1, · · · , pn. Then P̂g,n = J /Dp1,··· ,pn parametrizes not only the punctures
but the coordinate curves homotopic to these punctures as well. By construction
FA (h, δh) is invariant under Dp1,··· ,pn . Furthermore, if v is an infinitesimal vector
field representing one of the generators of Dp1,··· ,pn , then its contraction with
FA (h, δh) vanishes. Indeed, because

δhab → δhab + ε(va;b + vb;a) ,

the contraction of FA (h, δh) with v is given by

δFA (h, δh) =
∫

D[φ, b, c] e−I−ΔI A (φ, c)

∫
Σ

ε(va;b + vb;a)bab ,

which is equivalent to a shift in the c-ghost, δc = εv. Since A (φ, c) depends only
on c(pi), i = 1, · · · , n, and their derivatives at the punctures where v vanishes to
all orders, it follows from the translation invariance of the ghost measure that the
contraction of FA (h, δh) with v vanishes, too. This proves that FA (h, δh) is the
pullback of a form on P̂g,n. In order to integrate FA (h, δh), one would like to
choose a suitable parameterization {ms}, s = 1, · · · dim(νg,n), of the subspace νg,n
of P̂g,n. This change of variables will induce a Jacobian through

δhab =
dim(νg,n)∑
s=1

∂hab

∂ms

dms .
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Using the tracelessness of bab, we can implement this as a product (over s) of

Js = 1

4πi

∫
Σ

∂(
√
h δhab)

∂ms

bab d2z (3.20)

into the path integral measure in (3.3). Using the Schiffer variation argument, we
can represent a tangent vector on νg,n by a collection of n Witt vectors. To illustrate
this procedure, we consider again the tetrahedron in Fig. 3.5. The idea is to cut out
a disc around one of the four punctures, deforming it by the flow generated by the
Witt vector and finally to sew it back in. In the case at hand, we know that there
exists one non-vanishing meromorphic vector field w defined in a neighborhood of
that puncture, which cannot be extended to the whole sphere. These vector fields
generate translations in the moduli space, i.e. they move the punctures and deform
the coordinate curves around them. Upon substitution into (3.20) and using the
equation of motion ∇ib

ij = 0, we find

J = 1

2πi

∮
b(w) .

More generally, in case of p punctures the Jacobian is Jp =
p∏
s=1

Js , so we end up

with the p-form on νg,n

F (m) = N

(∫
D[φ, b, c] e−I A (φ, c) Jp

)
dm1 ∧ · · · ∧ dmp ,

where N denotes a normalization. A top form is obtained for

p = dim(νg,n) = 6g − 6 + 2n,

where n is the number of punctures on Σ with vertex operators of ghost number 2
inserted at each puncture. In addition, due to (3.19) and the BRST invariance of the
path integral measure in (3.3) under I → I +ΔI , we obtain an important identity

dFA (m)+ FQA (m) = 0 , (3.21)

which expresses the fact that FA (m) defines a chain map. An immediate conse-
quence of this is that the multilinear maps

f̂
g
n =

∫
νg,n

FA ∈ Hominv(V
⊗n,C) (3.22)
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satisfy an algebraic BV master equation. Indeed, for A ∈ V ⊗n we have

Qf̂
g
n =

∫
νg,n

FQA =
∫
νg,n

dFA =
∫
∂geoνg,n

FA (3.23)

= −1

2

∑
n1≤n2;g1≤g2

∫
{νg1 ,n1+1,νg2,n2+1}geo

FA − h̄

∫
Δgeoνg,n+2

FA

= −1

2

∑
n1≤n2;g1≤g2

{f̂ g1
n1+1, f̂

g2
n2+1}alg − h̄Δalgf̂

g

n+2 ,

where we used in the second line the geometric BV master equation (3.17). The
operation

{−,−}alg : Hominv(V
⊗n1 ,C)× Hominv(V

⊗n2 ,C)→ Hominv(V
⊗n1+n2−2,C)

(3.24)

was defined in Chap. 2 via the contraction of inputs of f̂ g1
n1 and f̂ g2

n2 with the inverse
of the symplectic form ω. Similarly,

Δalg : Hominv(V
⊗n,C)→ Hominv(V

⊗n−2,C) (3.25)

is, for n1, n2 ≥ 1, and n ≥ 2, defined through the contraction of two inputs of f̂ g
n

with ω−1. The subscript inv is to emphasize that f̂ g
n is graded symmetric under the

permutation of its inputs. In what follows, we will drop the label “alg” unless there
is a danger of confusion with the geometric operations introduced before.

We are now ready to write down the complete quantum BV action of closed
string field theory. Let f g

n = f̂
g
n ◦ (↑ 2)⊗n denote the algebraic vertex of genus g

with n closed string insertions. This vertex comes with a certain power in h̄, namely
2g + n/2 − 1. The full BV action then reads

S(Ψ ) =
∑
g,n≥2

h̄2g+n/2−1 f
g
n (Ψ ) ,

where Ψ is the closed string field. Furthermore, f 0
2 (Ψ ) can be identified with the

quadratic action (3.9).

Remark 3.3 It is worth pointing out that, while in the decomposition (3.17) the
boundary operator ∂ has a well-defined action on the vertices, it does not act on the
punctures. This distinction does not appear on the image of the chain map (3.21)
where the action of Q on the vertices is induced by its action on the vector space
attached to the puncture.
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As a consequence of (3.23), the action S satisfies the quantum BV master
equation

h̄ΔS + 1

2
{S, S} = 0 , (3.26)

where the action of Δ and {−,−} was defined in (3.24) and (3.25), respectively.
This equation will be recovered, with different notation, in (8.36) of Part II.

3.5 Algebraic Structure

We want to interpret the vertices of S in the language of homotopy algebras. Let
T V = ⊕∞

n=0 V
⊗n be the tensor algebra and Homcycl(T V, V ) the space of graded

symmetric maps from T V to V . Since ω is non-degenerate and the vertices are
invariant with respect to any permutation of the inputs, there is a unique map l

g
n :

V⊗n → V such that

f
g
n (Ψ ) = 1

n!ω(l
g

n−1(Ψ
⊗n−1), Ψ ) , g ≥ 0 ,

where lgn = lg ◦ in, with in the inclusion map V⊗n → T V . The map lg is an element
of Homcycl(T V, V ), i.e.

ω(a1, l
g
n (a2, . . . , an+1) = (−1)|a1|+|a2|+|a1|(|a2+···+an+1|)ω(a2, l

g
n (a3, . . . , an+1, a1) .

Upon substitution into the closed string BV bracket we get

{S, S} = ∂lS

∂Ψ i
ωij

∂rS

∂Ψ j

=
∑

g1,g2≥0
n1 ,n2≥1

h̄2g1+2g2−1

n1!n2! ω
(
ei, l

g1
n1 (c

⊗n1)
)
ωij

(
ej , l

g2
n2 (c

⊗n2)
)
,

where c ≡ h̄1/2Ψ, Ψ = Ψ iei for {ei} a homogeneous basis of V . Here, we took into
account the sign (−1)−i , with i the degree of ei , when commuting ∂Ψ i through lgn ,
which, in turn, is compensated by

ω(Ψ, l
g
n (Ψ, · · · , Ψ, ei , Ψ, · · · , Ψ )) = (−1)iω(ei , l

g
n (Ψ, · · · , Ψ )),
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due to the cyclicity of the functions l
g
n . With ωij = ω(ei , ej ) and δij =

ωikω(ek, ej ), we obtain

{S, S} =
∑

g1,g2≥0
n1,n2≥1

h̄2g1+2g2−1

n1!n2! ω
(
l
g2
n2 (c

⊗n2), l
g1
n1 (c

⊗n1)
)

=
∑

g1,g2≥0
n1,n2≥1

h̄2g1+2g2−1

n1!n2! ω
(
c, l

g2
n2 (l

g1
n1 (c

⊗n1), c⊗n2−1)
)

where the second sum runs over all (n1, n2 − 1)-unshuffles σ and where we denote
by ε(σ ) the Koszul sign, cf. (1) of Part II. In the present case, this latter sum
merely results in the factor 1

n! since all inputs are identical and of total degree zero.
Similarly,

h̄ΔS =
∑
g

h̄2g−1

(n− 2)!ω(c, l
g−1
n−1 (e

i ⊗ ei ⊗ c⊗n−3)) ,

where ei = ωij ej . Altogether, the BV equation (3.26) is equivalent to

∑
g1+g2=g

n1+n2=n−1

∑
σ

ε(σ )l
g2
n2 (l

g1
n1 (cσ(1), . . . , cσ(n1)), cσ(n1+1), . . . , cσ(n−1))

+ l
g−1
n+1 (e

i ⊗ ei ⊗ c⊗n−1) = 0 , (3.27)

which, in turn, is recognized as the loop homotopy algebra described is detail in
Sect. 8.2, see (8.42) in particular.

An equivalent shorthand expression of the condition (3.27) in terms of the graded
symmetrized inputs is

∑
g1+g2=g
i1+i2=n

l
g1
i1+1 ◦ (lg2

i2
∧ 1∧i1)(ec) + h̄ l

g−1
n+2 (ω

−1 ∧ 1∧n)(ec) = 0 , (3.28)

where ec :=
∞∑
n=0

1
n!c

∧n.
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3.6 Coalgebra Description

In the scaling limit h̄ → 0 with c ≡ h̄1/2Ψ finite, (3.28) reproduces the defining
equations of a strongly homotopy Lie or L∞-algebra, described in more detail in
Appendix A and in Part II. A convenient way to define L∞-algebras is the cobar
construction where one collects the various maps into a single object

L =
∞∑
n=1

∑
i+j=n

∑′

σ

(li ∧ 1∧j ) ◦ σ , (3.29)

where
∑′

σ indicates the sum over all unshuffles σ ∈ Σn with

σ1 < · · · < σi, σi+1 < · · · < σn.

The permutation σ denotes the map that sends c1 ∧ · · · ∧ cn to (−1)εcσ1 ∧ · · · ∧
cσn . As reviewed in Appendix A, L is a coderivation of SV = ⊕∞

n=0 V
∧n. The

space Coder(SV ) is equipped with the canonical bracket [−,−] defined through
the composition of maps, cf. Appendix A. For h̄ = 0, (3.28) is equivalent to

L2 = 1

2
[L,L] = 0,

which is precisely the defining relation for an L∞-algebra. We recognize a theory
with vertices given by a cyclic L∞-algebra L as a classical closed string theory.

Remark 3.4 The construction of the minimal model map for classical closed string
theory proceeds in close analogy with the point particle. We already noticed in
Sect. 2.2 that the construction of the minimal model is equivalent to the construction
of tree-level S-matrix amplitudes via Feynman rules. First one chooses a gauge
(e.g., the Siegel gauge b+0 ψ = 0) so that one can define a propagator Q−1. With
the aid of the latter, we construct all possible rooted trees with vertices labeled by
ln := π1 ◦ L ◦ in and internal edges labeled by the propagator. Here π1 stands
for the projection to maps with one output. The collection of all these trees, with
inputs and the output restricted to the cohomology H , then defines the multilinear
maps l̃n = π1 ◦ L̃ ◦ in in complete analogy with Sect. 2.2. Thus, l̃n represents the
n+ 1-string S-matrix amplitudes. Furthermore, L̃2 = 0 so that the map

F : (H, L̃)→ (V ,L)

is a quasi-isomorphism between L∞-algebras. The proof of these claims goes
analogically with the point particle case in Sect. 2.2, with

c = F(cP ) = π1(1− l−1
1 δ)−1(e∧cP − 1) ,
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where cP ∈ H and

l̃n = P δ(1− l−1
1 δ)−1in , n ≥ 2 , (3.30)

where δ = π1 ◦ L ◦ (1− i1). Then

(Q+ δ)F = FL̃ and L̃2 = 0

can be established by inspection. More generally, this structure follows from the
homological perturbation lemma. On physical grounds, the latter property is a
consequence of the Ward identities implied by the gauge invariance.

Let us now return to the quantum theory, h̄ �= 0, whose algebraic structure is
that of the loop homotopy algebra (also called quantum L∞-algebra). It can be
described in terms homomorphisms lgi : V ∧i → V , with an additional label given
by the genus g, as well as the inverse ω−1 of the symplectic form ω as in (3.28).
Alternatively, one can consider ω−1 as one of the operations of the algebra. In this
setup we have not only operations with one output like l

g
i , but also the operation

ω−1 with no input and two outputs. From this point of view, this algebraic structure
is a special case of a homotopy involutive Lie bialgebra, also called an IBL∞-
algebra. We give a detailed account of such algebras in Appendix A and in Part II.
To describe their relation to the quantum BV equation, we lift ω−1 to a coderivation
D(ω−1) ∈ Coder2(SA) of order two defined by (see Appendix A)

π1 ◦D(ω−1) = 0 and π2 ◦D(ω−1) = ω−1 . (3.31)

The combination

L =
∞∑
g=0

h̄g
∞∑
n=1

∑
i+j=n

∑′

σ

(l
g

i ∧ 1∧j ) ◦ σ + h̄D(ω−1) (3.32)

defines an element in Coder(SA, h̄) of degree 1. Condition (3.28) is then equiva-
lent to

L2 = 0 ,

where the cyclicity of L with respect to ωc is assumed. These are the algebraic
relations of quantum closed string field theory expressed in terms of IBL∞-algebras.



3.7 Uniqueness and Background Independence 49

3.7 Uniqueness and Background Independence

In this section, we will discuss the question whether the CFT morphism that
determines the algebraic string field theory vertices and, therefore, the particular
realization of an L∞-algebra, is unique up to an equivalence. This important
question in string theory is, however, not directly relevant to the rest of this book and
can thus be skipped by the reader who is more interested in the algebraic aspects of
string theory.

There is a definite answer to the above question as far as continuous deformations
of a given SFT are concerned. Let us denote the classical closed string vertices by
ln ≡ l0n. The bracket [−,−] on Coder(SA) (see Appendix A) induces the Chevalley–
Eilenberg differential dC = [L,−] on the deformation complex. On the other
hand, due to the isomorphism Hom(V ∧k

c , V ) → Hom(V ∧k+1
c ,C) this induces a

differential dc on the cyclic complex. Thus, any consistent infinitesimal deformation
Δl = {Δln}n∈N of the L∞-structure {ln}n∈N (Δ not to be confused with the BV
operator) is dc-closed, dc(Δl) = 0. By carefully analyzing continuous deformations
of the CFT morphism, one arrives at the following result:
Let I [φ, c, c̄, b, b̄] be the closed string world-sheet CFT action on M defining the
morphism from the BV algebra of the geometric vertices {νn} to the BV algebra of
algebraic vertices sn, Vc the corresponding module of conformal tensors (closed
string Hilbert space) and Qc the BRST differential. Then

coh(dc) = ∅ .

Remark 3.5 The above result has important consequences for the background inde-
pendence of classical closed string field theory. It is intimately related to the nature
of equivalence classes of L∞-algebras. Clearly, L∞-field redefinitions preserve the
L∞-structure and can be interpreted as [·, ·]-gauge symmetry transformations if they
are continuously connected to the identity. On the other hand, field redefinitions
include shifts in the closed string background. These are easily seen to be L∞-
isomorphisms. For a given homotopy algebra we can then consider a non-vanishing
Maurer–Cartan element Ψ0 with L(eΨ0) = 0, in order to construct a twisted
homotopy algebra LΨ0 = E(−Ψ0) ◦L ◦E(Ψ0) upon conjugation. The definition of
E(−Ψ0) is given in Appendix A. The background independence then would imply
that the structure maps of the minimal model obtained from this homotopy algebra
are equivalent to the perturbative S-matrix elements of the world-sheet CFT in the
new background, see Fig. 3.7.

Since coh(dc) = ∅, the L∞-algebra LCFT (Ψ0) obtained from the world-sheet
theory in the new background Ψ0 corresponding to the MC-element Ψ0 is L∞-
equivalent to the L∞-algebra LΨ0 obtained from L by conjugation, i.e.

LCFT (Ψ0) = K−1 ◦ LΨ0 ◦K ,
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Fig. 3.7 A schematic representation of the background independence. The vertical arrow on the
left represents a deformation of the background implemented by a deformation ΔI(Ψ0) of the
CFT morphism

where K is an L∞-isomorphism continuously connected to the identity. However,
since the L∞ equivalence classes identify all continuously connected closed
backgrounds, we cannot conclude from the above that LCFT (Ψ0) and LΨ0 actually
describe the same background. The necessary refinement for this is then provided
by the open-closed homotopy algebra described in the next section, which implies
that K = 1. We should note, however, that generic on-shell closed string
backgrounds may not be continuously connected to each other and furthermore do
not preserve Vc. This puts a limitation on applicability of the proof of background
independence given here.

3.8 Summary, Comments, and Remarks Towards Part II

It should be clear from the discussion in this chapter, that abstractly, quantum closed
string field theory can be defined as a morphism from the BV algebra of singular
chains on the moduli space of punctured closed Riemann surfaces to the BV algebra
of functions on a differential graded vector space V , endowed with a degree -
1 symplectic form ω, i.e. on the state space of the first quantized closed string.
Such a morphism realized by a world-sheet conformal field theory carries geometric
vertices νg,n assembled into a solution of the quantum BV master equation (3.17)
on the space of chains on the moduli space into algebraic vertices fg,n defining
the string field theory action. Geometric vertices themselves are determined by a
decomposition of the moduli space.

The relation to Part II is as follows. The decomposition of the moduli space
can be interpreted as a morphism between two odd (aka twisted) modular operads,
see Definition 6.24. This morphism goes from the Feynman transform, cf. Defini-
tion 7.9, of the modular commutative operad in Definition 6.18 into the odd modular
operad of chains on the moduli space. On the latter there is an obvious action of
permutations of punctures. The operadic operations (3.15) and (3.16) are induced
by the twisted sewing and self-sewing of punctured closed Riemann surfaces.

We know from Theorem 8.2 that such a morphism is equivalent to a solution of
the quantum BV equation on the respective space of invariants under permutations.
In the case of the commutative operad, this is the complex of chains invariant under
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the permutations of punctures as described in Sect. 3.3. This is the horizontal arrow
in Fig. 1.1 providing the geometric vertices νg,n.

The BV algebra morphism given by formula (3.22) that sends a geometric vertex
νg,n into the algebraic vertex f g

n , when extended from invariant cochains to all co-
chains, can again be interpreted as a morphism of two odd modular operads going
from the odd modular operad of cochains on the moduli space to the endomorphism
operad, i.e. as a representation of the former one. This is the vertical arrow in Fig. 1.1
providing the algebraic vertices f g

n .
Finally, the composition of the two odd modular operad morphisms gives the

algebra over the Feynman transform of the modular commutative operad, i.e. the
diagonal arrow in our Fig. 1.1. As such, it is equivalent to a solution to the quantum
BV master equation on the space of complex-valued graded symmetric maps on
the CFT state space, described by algebraic vertices f

g
n : V ⊗n → C, due to

Theorem 8.3 of Part II. This is, of course, guaranteed by the construction that uses
the composition of the horizontal and vertical arrows in Fig. 1.1. The result is the
quantum closed SFT action in Zwiebach’s construction. Using the odd symplectic
form, the algebraic vertices f g

n can be turned into degree 1 n-ary brackets lg,n :
V⊗n → V . The resulting homotopy algebra is the loop homotopy algebra (aka
quantum L∞-algebra) described in Sect. 3.5 of Part I and again from the operadic
point of view in Sect. 8.2 of Part II. The graded symmetry of the vertices/brackets
is due to the trivial action of permutations on the commutative operad.

The same algebraic structure, i.e. the loop homotopy algebra can be reinterpreted
in terms of an IBL∞-algebra. The main difference is that the BV operator now,
contrary to the loop homotopy algebra formulation, becomes one of the operations.
In this formalism the quantum BV master equation h̄Δ+ 1

2 {S, S} = 0 equivalently
translates to the nilpotency of the full BV operator h̄Δ + {S,−}. IBL∞-algebras,
as they are used here, are described in Appendix to Part I, cf. Sect. B.2. A more
rigorous alternate version is given in Part II, Sect. 8.3.

All constructions described above have their classical analogue. In STF it is the
scaling limit h̄ → 0, c ≡ h̄1/2Ψ , cf. Sect. 3.6, leading to the classical BV action
and the correspondingL∞-algebra. Since the powers of h̄ count loop contributions,
we may forget about loops.

In the operadic language of Part II, this scaling limit corresponds to taking
the forgetful functor from the modular commutative operad (the right adjoint to
the modular envelope functor (6.18), cf. Sect. 6.4), to the cyclic commutative
operad. Roughly speaking, as above, we forget about loops everywhere and consider
only genus 0 corollas. The horizontal arrow in Fig. 1.1 now goes from the cobar
construction of the latter (here we consider only the trees generated by corollas
instead of all graphs) into the odd cyclic operad of the genus 0 closed Riemannian
surfaces with punctures, where the self-sewing operation is now forbidden. The
vertical arrow is as before given by conformal field theory, however, now evaluated
only at zero genus. The composition, i.e. the diagonal arrow in Fig. 1.1, is the
classical (genus 0) closed string field theory.
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Of course, one may wonder how Fig. 1.1 modifies in the world of IBL∞-algebras.
This would lead us to properads, their cobar construction and representations. We
will, however, not pursue this here.

Concerning the scattering amplitudes, i.e. the induced loop homotopy structure
on the Q-cohomology, this works very much the same way as already described
in Chap. 1, cf. (2.35). Although, in formula (3.30), we gave only the result for
(cyclic) L∞-algebras, the modification of that formula to loop homotopy algebras is
straightforward. Note that (3.30) is the formula from the homological perturbation
lemma. It expresses the change of the trivial differential on functions on the Q-
cohomology H induced by the perturbation of the BRST operator Q by the map δ

introduced there. Now, the loop homotopy version leads to a similar formula, e.g. L
in δ is replaced by h̄Δ+L, where we think of the BV operatorΔ as an operation with
zero inputs and two outputs and whereL comprises also all higher genus operations.
As in Remark 2.10, it is enough for our purposes to think about morphisms of loop
homotopy algebras as of (nonlinear) maps between the underlying vector spaces
compatible with the symplectic structures and intertwining between the respective
full BV operators.

Further Reading
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• M. B. Green, J. H. Schwarz and E. Witten, “Superstring theory. Vol. 1 and 2”,
Cambridge Monographs On Mathematical Physics, ( 1987),

• J. Polchinski, “String theory. Vol. 1 and 2”, Cambridge University Press (2005),
• R. Blumenhagen, D. Luest and S. Theisen, “Basic concepts of string Theory”,

Springer Verlag (2013).

For early work on BRST invariant string field theory, see

• W. Siegel and B. Zwiebach, “Gauge string fields”, Nucl.Phys. B263 (1986) 105–
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• C. B. Thorn, “String field theory”, Phys. Rept. 175, 1–101 (1989).

For the covariant formulation of interacting quantum closed string field theory, see

• B. Zwiebach, “Closed string field theory: Quantum action and the B-V master
equation”, Nucl.Phys. B390, (1993) 33–152, and

• B. Zwiebach, “Oriented open - closed string theory revisited”, Annals Phys. 267,
(1998) 193–248.
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• K. Costello and B. Zwiebach, “Hyperbolic string vertices”, arXiv:1909.00033.
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In our description of the measure on the moduli space we followed Witten’s notes
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• C. de Lacroix H. Erbin, S. P. Kashyap, A. Sen, M. Vermaet, “Closed superstring
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• H. Kajiura and J. Stasheff, “Homotopy algebras inspired by classical open-closed
string field theory”, Commun. Math. Phys. 263, 553–581 (2006).

For a detailed description of the IBL∞-algebra underlying quantum closed string
theory see

• K. Cieliebak, K. Fukaya and J. Latschev, “Homological algebra related to
surfaces with boundary”, arXiv:1508.02741.

One description of the appropriate complex on the moduli space of (bordered)
Riemann surfaces with punctures can be found in

• E. Harrelson, A.A. Voronov and J. J. Zuniga, “Open-closed moduli spaces and
related algebraic structures”, Lett. Math. Phys. 94 (2010), no. 1, 1–26.



4Open and Closed Strings

4.1 World-Sheets with Boundaries

In addition to the theory of closed strings just described, we may construct another
consistent theory by considering world-sheets Σ with boundaries. Such a theory
necessarily contains open strings. In this case, we can insert open string states to the
boundaries and closed string states to the bulk of Σ as in Fig. 4.1.

Let us first characterize the open string Hilbert space Vo. For this, we need to
fix the boundary conditions for the various fields in the world-sheet CFT. Let us
focus on Σ of genus 0 with one boundary and no closed string insertions. Hence,
the world-sheet of an open string is topologically the infinite strip [0, π]×R. By the
conformal mapping z = −e−iw (w = σ + iτ with (σ, τ ) ∈ [0, π] × R), the strip
is mapped to the upper half plane H. For concreteness, we take Neumann boundary
conditions ∂nφ(z, z̄)|∂Σ = 0, and similarly for c or b in place of φ. Here, ∂n is
the derivative in the direction normal to the boundary. Alternate (e.g. Dirichlet)
boundary conditions will not affect our treatment below as long as they preserve
the conformal symmetry of the world-sheet action, that is, admissible boundary
conditions must satisfy the Cardy condition (T − T̄ )|∂Σ = 0. The fields living
on H can be separated into holomorphic and anti-holomorphic parts, but due to
the boundary conditions, these two parts combine into a single holomorphic field
defined on the whole complex plane C. This is the doubling trick; the holomorphic
field in the lower half plane is expressed in terms of the anti-holomorphic field
in the upper half plane through the reflection of the coordinate, ∂zφ(z)|Im(z<0) =
∂z̄φ(z̄)|Im(z>0), etc. We then expand each field on C in a Laurent series (mode
expansion)

i∂zφ(z) =
∑
n∈Z

αn

zn+1 , c(z) =
∑
n∈Z

cn

zn−1 , b(z) =
∑
n∈Z

bn

zn+2 ,
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Fig. 4.1 Open-closed
world-sheet with open string
punctures on the boundary
and closed string punctures in
the bulk

where the conformal weights are h∂zφ = 1, hc = −1, hb = 2, and the modes satisfy
the commutation relations

[αμm, ανn] = mgμνδm+n,0 , {cm, bn} = δm+n,0 .

Similarly,

Ln =
∮

dz

2π
zn+1T (z) , T (z)|Im(z<0) = T̄ (z̄)|Im(z>0).

In the operator formalism, the space of states Vo is generated by acting with the
creation operators on the vacuum |0,k〉. The grading on Vo is again induced by
assigning ghost number one to c, minus one to b and zero to φ, i.e. every c mode
increases the ghost number by one, whereas the b modes decrease the ghost number
by one. The operator-state correspondence for open string states works much the
same as for the closed case by mapping τ = −∞ to z = 0. We then define
the corresponding Fock space as the set of polynomials in the fields and their
derivatives Φ(φ, b, c, ∂zφ, · · · ) at the origin. The vector Φ[φ̄, b̄, c̄] ∈ Vo is then
defined by evaluating the path integral measure in (3.3) on the half disk with
Φ(φ, b, c, ∂zφ, · · · ) inserted at the origin and subject to boundary conditions at
|z| = 1

Φ[φ̄, b̄, c̄] =
∫

{φ,b,c}|∂�={φ̄,b̄,c̄}
D[φ, b, c] e−I (φ.b.c.h)Φ(φ, ∂zφ, · · · )(0) .

A physical open string state is then a ghost number one state that has a representative
as a conformal primary with conformal weight h = 0 of the form

Φ(0) = Φ(φ(0), ∂zφ(0), · · · )c(0) ,

where the c(0)-insertion represents the globally defined vector field on H that is non-
vanishing at z = 0 and which generates the translation of the origin. Nonphysical
states correspond to non-primary insertions with arbitrary dependence on c and its
derivatives. Utilizing the operator-state correspondence, we can identify every state
φ ∈ Ṽo with a local operator Oφ and define the BPZ inner product by

〈Φ1,Φ2〉 := lim
z→0

〈
(I∗OΦ1)(z)OΦ2(z)

〉
H

,
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where I (z) = −1/z, 〈. . . 〉H is the correlator on the upper half plane and I∗O
denotes the conformal transformation of O with respect to I . Due to the PSL(2,R)-
invariance this correlator is non-vanishing only if it is saturated by three c-ghost
insertions and consequently, the BPZ inner product carries ghost number −3. The
BRST invariance of the open string is the same as for the closed string modulo the
identification of the left and right moving modes as explain above. Thus,

Q =
∮

dz

2πi
c(z)

(
T φ(z)+ 1

2
T g(z)

)
= c0L0 + · · · .

In this way we find the kinetic term of the open string field action

Skin = 1
2 〈Φ,QoΦ〉

which, upon variation, reproduces the correct cohomology for the open string
physical states. This is best seen in Siegel gauge, b0Φ = 0.

In order to identify the BPZ inner product with the odd symplectic structure ω,
we shift the degree by one, which turns an odd graded symmetric inner product into
an odd symplectic structure

ωo := 〈−,−〉 ◦ (↑⊗ ↑) : Vo[−1] ⊗ Vo[−1] → C ,

where Vo[−1] :=↓Vo. In what follows, we will not distinguish between Vo[1] and
Vo.

To summarize, we have an odd symplectic structure ωo on Vo of degree −1 and
the classical open string field which is a degree zero element in Vo.

Having constructed the kinetic term for the open string, let us now turn to
the interactions of open and closed strings. Topologically, the generic elementary
interaction vertex, sketched in Fig. 4.2, is a genus g Riemann surface Σ with b

boundaries, m punctures on the boundaries, and n punctures in the interior. The
corresponding moduli space is denoted by M

b,g
n,m. A geometric vertex in M

b,g
n,m of

real dimension 6g−6+2n+3b+m is defined by the metric of minimal area under
the condition that the length of any nontrivial open curve in Σ with endpoints at
the boundaries be greater or equal to π and that the length of any nontrivial closed
curve be greater or equal to 2π . The geometric decomposition of the moduli space
of bordered Riemann surfaces is again described by a master equation of the from
(3.17) although the details of the sewing procedure are more involved.
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Fig. 4.2 Open-closed vertex with closed and open states inserted by sewing in unit disks and
semidisks along the respective coordinate curves

4.2 Open String

Let us first consider world-sheets with a single boundary of genus zero and no
closed string punctures. The geometric cubic interaction vertex is a disk with three
punctures and local coordinates around the punctures. This vertex has no modulus
in analogy with the cubic closed string vertex. We can build a Feynman diagram for
the scattering of four strings by inserting a propagator between any two punctures of
two cubic vertices. This certainly covers the part of the moduli space of the disk with
four punctures. In fact, it turns out that these Feynman diagrams cover the whole
moduli space M 1,0

4,0 . In analogy to the closed string, we would now like to express
this fact as a solution of a BV equation. Since the geometric vertex is invariant under
a rotation of the punctures on the boundary, it seems natural to assume that the cyclic
permutations act trivially on the cochains of M . However, it turns out that it is not
possible to define a BV bracket {−,−} on this moduli space. We therefore consider
the cyclic cochain complex instead for which

ν(p2, · · · , pn, p1) = (−1)n−1ν(p1, · · · , pn−1, pn) . (4.1)

Later, we will see that this choice is the correct one also from the point of view of
the CFT-morphism to the actual open string theory vertices. On the cyclic complex,
the bracket is defined by sewing the last puncture pn1 of ν with the first one of μ

{ν,μ} = (−1)mνdμ(ν pn1
•q1 μ)cycl , (4.2)

where mν is the number of punctures of ν, dμ is the dimension of the moduli
space associated with μ, and the subscript “cycl” stands for the sum over all
cyclic permutations ensuring that the result is again in the cyclic complex. As an
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Fig. 4.3 The BV bracket of
two cubic open string vertices

example, let us compute {ν3, ν3}. First we note that ν3 is just a point. Thus dν3 = 0.
We then glue the third puncture of the first cubic vertex (straight line) with the
first puncture of the second vertex (straight line) and subsequently sum over the
cyclic permutations of the four punctures with the signs coming from (4.1). This
is sketched in Fig. 4.3 and is easily recognized as twice the difference between the
s-channel and t-channel amplitude for the scattering (1, 2) → (3, 4). From this we
also see that the graphs constructed by connecting cubic vertices by propagators
cover the moduli space for the disk with four punctures. Indeed, since the t-channel
smoothly crosses into the s-channel when the propagators collapse to zero length,
there is no boundary at that point and therefore no ν4 is needed. Thus, the geometric
BV equation that underlies the classical (h̄ = 0) field theory of open strings is
simply

{ν3, ν3} = 0 . (4.3)

For the closed string, where cyclic permutations are replaced by the action of the full
symmetric group, there would be an additional u-channel contribution, altogether
4! terms.

We should stress that the action of the operator Δ, defined by the operation
of gluing the first puncture with the second, plus gluing the first puncture with
the third, etc., followed by a subsequent cyclic summation, increases the number
of boundaries and therefore takes us outside the restriction assumed here. So, the
field theory of open strings described here is a classical one (h̄ = 0). Apart from
this restriction, this defines a consistent string field theory. The CFT morphism is
constructed in complete analogy with Sect. 3.4 and induces the action

S = 1
2 〈Φ,QoΦ〉 + 1

3
〈Φ,Φ ∗Φ〉 , (4.4)

whereΦ∗Φ, given by the image of ν3 via the CFT morphism, defines an associative
product due to (4.3). This is just the open string field theory of Witten. Its algebraic
structure is simply that of a differential graded associative algebra (Vo, ∗,Qo)

together with an invariant inner product, 〈−−〉 on Vo, that is the one that satisfies

〈a ∗ b, c〉 = 〈a, b ∗ c〉 and 〈a, b〉 = (−1)|a||b|〈b, a〉.

Remark 4.1 Classically, consistent deformations of this open string field theory are
given by homotopy associative, or A∞-algebras (Vo, m̂k), k ≥ 1, that preserve the
inner product. To see this, we use the fact that, in the presence of an invariant inner
product, there is a natural isomorphism Hom(A⊗k, A) → Hom(A⊗k+1,C). This
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can be used to write the action as

So =
∞∑
n=1

1

n+ 1
ωo(mn(Φ

⊗n),Φ) .

Here, Φ = Φiei , where {ei} is a homogeneous basis of Vo. To keep the notation
concise, we denote the degree |ei | of ei simply by i and degree of Φi by −i. The
classical BV equation applied to an open string field theory action then gives

{So, So}o = ∂lSo

∂Φi
ωij

∂rSo

∂Φj
(4.5)

=
∞∑

n1=1

∞∑
n2=1

ωo
(
ei,mn1(Φ

⊗n1)
)
ωij ωo

(
ej ,mn2(Φ

⊗n2)
)
,

where we used that ∂Φi picks up a sign (−1)i when commuted through mn as well
as the equality

ωo(Φ,mn(Φ, · · · ,Φ, ei ,Φ, · · · ,Φ)) = (−1)iωo(ei,mn(Φ, · · · ,Φ)).

Then, using ωij = ω(ei , ej ) and δij = ωikω(ek, ej ), we find

{So, So}o =
∞∑

n1=1

∞∑
n2=1

ωo
(
mn2(Φ

⊗n2),mn1(Φ
⊗n1)

)

=
∞∑
n=1

2

n+ 1

∑
i+j+k=n

ωo

(
mi+k+1

(
Φ⊗i ⊗mj(Φ

⊗j )⊗Φ⊗k) ,Φ)

=
∞∑
n=1

2

n+ 1
ωo

(
π1 ◦M2(Φ⊗n),Φ

)
= 0 .

All we had to use was the cyclicity of mn. Also, M ∈ Codercycl(T Ao) is the
coderivation corresponding to m ∈ Homcylc(T Ao,Ao) and Eq. (4.5) is equivalent
to M2 = 0, the well-known statement that the vertices of a classical open string
field theory define an A∞-algebra. We give a detailed description of A∞-algebras
in Appendix A. Their definition is very similar to that of L∞-algebras described in
the previous section.

Infinitesimal deformations of this type of algebras are governed by cyclic coho-
mology. To see this connection, we note that in the presence of an invariant inner
product, there is a natural isomorphism Hom(A⊗k, A) → Hom(A⊗k+1,C). The
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image of m̂k ∈ Hom(V⊗k
o , Vo) in Hom(V ⊗k+1

o ,C) is

fk+1(Φ1, · · · ,Φk+1) = ω(m̂k(Φ1, · · · ,Φk),Φk+1) .

The cyclic symmetry (4.1) implies that m̂k preserves the inner product. For example,

ω(m̂2(Φ1,Φ2),Φ3) = f3(Φ1,Φ2,Φ3) = (−1)|Φ1|(|Φ2|+|Φ3|)f3(Φ2,Φ3,Φ1)

= (−1)|Φ1|(|Φ2|+|Φ3|)ω(m̂2(Φ2,Φ3),Φ1)

= ω(Φ1, m̂2(Φ2,Φ3)) ,

where we used (4.1) in the second identity and |Φ| denoted the ghost number of the
string field Φ. In close analogy to the closed string, the collection of maps {m̂k} can
be lifted to a coderivation on

T Vo =
∞⊕
n=0

Vo[1]⊗n .

Then the bracket [M,−], M = ∑
mn, on Coder(T Vo) induces a Hochschild

coboundary operator dH on CCk ≡ Homcycl(V
k
o , Vo). For the cubic theory at hand,

m̂1 = Q and m̂2 = ∗, we have

dH = (−1)k+1Q+ δ ,

where

(Qfk)(Φ1, . . . , Φk) =
k∑

i=1

(−1)Φ1+...+Φi−1fk(Φ1, . . . ,QΦi, . . . , Φk)

and

(δfk)(Φ1, · · · ,Φk+1) =
k∑

i=1

(−1)ifk(Φ1, · · · ,Φi ∗Φi+1, · · · ,Φk+1)

+(−1)Φ1(Φ2+···+Φk+1)fk(Φ2, · · · ,Φk,Φk+1 ∗Φ1) .

From the above, it is clear that dH takes cyclic elements to cyclic elements.
Furthermore, dH squares to zero since Q2 = δ2 = [Q, δ] = 0. The cyclic
cohomology is then the cohomology of dH inCC∗. It turns out that this cohomology
is isomorphic to the physical cohomology of closed strings. More precisely:

Let I [φ, c, b] be the world-sheet action defining open string world-sheet CFT-
morphism between geometric and algebraic vertices, Vo the corresponding module
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of conformal tensors (open string Hilbert space) and Q the open string BRST dif-
ferential. Then, the only nontrivial infinitesimal deformations of this CFT-morphism
preserving Vo are infinitesimal deformations of the closed string background in the
relative cohomology of Qc

coh(dH) ∼= coh(b−,Qc) . (4.6)

This can alternatively be expressed by saying that the only way to deform open
string theory is to place it in a nontrivial closed string background, e.g. a curved
metric on R26 that solves the closed string equations of motion.

Remark 4.2 A particular class of deformations that do not preserve Qo are the
shifts in the open string background. Such transformations are, however, dH -exact
as are all field redefinitions of φ. From a physics perspective, the interesting fact
implied by the above result is that open string theory already contains the complete
information about the particle content of closed string theory.

4.3 Summary, Comments, and Remarks Towards Part II

Here, we comment only on open strings and leave the comments on the open-closed
theory to Sect. 5.3. Most of the discussion below will be parallel to the case of the
closed string in Sect. 3.8. Concerning physics, the main difference is that there is no
consistent open string filed theory beyond the classical level, i.e. the one containing
only interaction through a disc with (at least three) punctures on the boundary. A
consistent quantum field theory of open strings needs the inclusion of closed strings.
In the previous sections, we described the classically consistent Witten’s open
SFT (4.4), which contains only cubic interaction, and where the resulting algebraic
structure is that of a differential graded cyclic associative algebra. Classically
consistent deformations of this open string theory lead us to a generalization of
associative structures, i.e. to their homotopy versions, which are the cyclic A∞-
algebras. Obviously, the vertices are graded symmetric only with respect to cyclic
permutations of punctures on the disc boundary.

In the operadic language of Part II, A∞-algebras are algebras over the cobar
construction of the cyclic associative operad of Example 6.18. Here, the difference
against the cyclic commutative operad is the absence of a nontrivial action of
all permutations. The consequence is the above-mentioned graded symmetry of
the corresponding algebraic vertices fk and of the corresponding products mk , in
Sect. 4.2, under the cyclic permutations only.

Concerning the construction of Witten’s open SFT in the spirit of Fig. 1.1, in the
upper left corner we would have the cobar construction of the cyclic associative
operad. In the upper right corner we would have the odd cyclic operad of cyclic
chains (4.1) on the moduli space of discs with punctured boundaries, the operadic
operations being defined by sewing discs via punctures as in (4.2). The horizontal
arrow, a morphism of these two operads, would be given by a decomposition of the
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moduli space. In the present case, the relevant decomposition uses only the trivalent
geometric vertex ν3 satisfying the classical BV master equation (4.3). The horizontal
arrow, provided by the open genus-0 CFT and landing in the endomorphism operad
of the open conformal theory state space, gives the cubic open STF action (4.4).

Despite the non-existence of a consistent quantum open string field theory,
nothing prevents us from constructing an associative analogue of a loop homotopy
algebra (quantum L∞-algebra). We may call it a quantum A∞-algebra, or quantum
open homotopy algebra, similarly as we could have coined the name quantum closed
homotopy algebra for a quantumL∞-algebra. Actually, quantum versions of homo-
topy algebras will exist for all modular operads and also for their colored versions,
e.g. quantum open-closed homotopy algebra over the two-colored combination of
the modular associative and modular commutative operad.

Hence, in the quantum associative case, we start from the modular associative
operad, i.e. the modular envelope of the cyclic associative operad. It is the
linearization of the modular operad described by Theorem 6.1 in Part II. Axioms of
quantum homotopy associative algebras are then obtained by applying Theorem 8.2
to its Feynman transform.

Also, for quantumA∞-algebras, in particular for their classical versions, i.e.A∞-
algebras, we could, using homological perturbation lemma, transfer the respective
algebra structures to their Q-cohomology, cf. the corresponding discussion in
Sect. 2.3 related to formulas (2.35) and (3.30), respectively.

Finally, let us make a comment on D-branes, a subject which we did not touch at
all. These can be included in the classical A∞-picture. We refer the interested reader
to work of Gaberdiel and Zwiebach cited below.

Further Reading

The open bosonic string field theory described in this chapter was formulated by
E. Witten in

• E. Witten, “Noncommutative geometry and string field theory”, Nucl. Phys.
B268 (1986) 253

The proof that the cubic action (4.4) does realize a decomposition of the moduli
space of open Riemann surfaces with punctures on the boundary can be found in

• B. Zwiebach, “A proof that Witten’s open string theory gives a single cover of
moduli space”, Commun. Math. Phys. 142 (1991) 193.

A derivation of the isomorphism (4.6) can be found in

• N. Moeller and I. Sachs, “Closed String Cohomology in Open String Field
Theory”, JHEP 1107 (2011) 022.
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The algebraic structure of open string theory with non-abelian gauge groups was
discussed in

• M. R. Gaberdiel and B. Zwiebach, “Tensor Constructions of Open String
Theories I: Foundations”, Nucl.Phys. B505 (1997) 569–624, and

• M. R. Gaberdiel and B. Zwiebach, “Tensor Constructions of Open String
Theories II: Vector bundles, D-branes and orientifold groups”, Phys.Lett. B410
(1997) 151–159.



5Open-Closed BV Equation

An important conclusion at the end of the previous chapter is that the unique
consistent infinitesimal deformation of classical open string field theory is an open-
closed vertex with one closed string puncture, cf. the italicized paragraph before
formula (4.6). To continue, we want to analyze the consistency of a generic open-
closed vertex as in Fig. 4.1. For this, we first need to review the various sewing
operations on Riemann surfaces with labeled boundaries and labeled punctures
in the bulk as well as on the boundaries. Concerning the sewing of closed string
punctures, we have already discussed it in Sect. 3.3. The sewing of two open string
punctures on different vertices with the corresponding cyclic complex was treated
in the previous section. What remains, is the sewing of open string punctures on the
same surface. Acting with the geometric operator Δ on two open punctures on the
same boundary of a given Riemann surface Σ increases the number of boundaries
by one and decreases the number of open string punctures by two while leaving the
genus invariant. In contrast, acting on two punctures on different boundaries of the
same surface increases the genus by one, decreases the number of boundaries by one
and decreases the number of punctures by two. A detailed discussion of the various
possible sewings of open-closed surfaces can be found in the literature quoted at the
end of this chapter. Through the present chapter, we use notation and terminology
introduced in the appendix to Part I.

5.1 Open-Closed BV Action

The operations described above can again be packaged into a geometric BV
equation with a degree one bracket {−,−} and a degree one BV operator provided
we consider the singular chain complex with a factor (−1)(mi+1)(mj+1) assigned
under the exchange of boundary i with boundary j of the same surface. Here mi

© Springer Nature Switzerland AG 2020
M. Doubek et al., Algebraic Structure of String Field Theory, Lecture Notes
in Physics 973, https://doi.org/10.1007/978-3-030-53056-3_5
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and mj are the numbers of open string punctures on the respective boundaries. The
BV equation then reads

∂ν
b,g
n,m + 1

2

∑
n1≤n2;g1≤g2
b1≤b2;m1≤m2

{νb1,g1
n1+1,m1

, ν
b2,g2
n2+1,m2

}c + h̄Δcν
b,g−1
n+2,m

+ 1

2

∑
n1≤n2;g1≤g2
b1≤b2;m1≤m2

{νb1,g1
n1,m1+1, ν

b2,g2
n2,m2+2}o + h̄Δoν

b−1,g
n,m+2 + h̄Δoν

b+1,g−1
n,m+2 = 0 ,

where n = n1 + n2, g = g1 + g2, b = b1 + b2, and m = m1 + m2. Here and in
what follows, we will decorate with the subscript c objects that are associated with
closed strings (Vc,Δc, etc.) and with the subscript o objects that are associated with
open strings (Vo,Δo, etc.),

A solution to this BV equation can be obtained using the minimal area con-
struction of Zwiebach: Given a genus g Riemann surface Σ with b boundaries,
m punctures on the boundaries and n punctures in the interior, the string vertex is
defined by the metric of minimal area under the condition that the length of any
non-trivial open curve in Σ with endpoints at the boundaries be greater or equal to
π and that the length of any non-trivial closed curve be greater or equal to 2π .

In order to transfer this BV-structure from the complex of geometric vertices to
the BV-algebra on Vo ⊕ Vc, one needs an extension of the path integral measure
defining FA in (3.18) to include surfaces with boundaries. This is straightforward
and we will thus not enter in the details. The resulting string field theory vertex
f
b,g
n,m1,...,mb

of genus g with n closed string insertions and b boundaries with mi

representing the number of insertions on the i-th boundary comes with the power
2g + b + n/2 − 1 in h̄. The full BV action reads

S(c, a) =
∑
b,g

∑
n

∑
m1,...,mb

h̄2g+b+n/2−1 f
b,g
n,m1,...,mb

(c, a) , (5.1)

where c ∈ Vc is the closed string field and a ∈ Vo is the open string field. The BV
equation (3.26) puts constraints on the collection of vertices f b,g

n,m1,...,mb
and our goal

is to interpret these constraints in the language of homotopy algebras.
The idea is to split the set of all vertices into two disjoint sets. One contains

all vertices corresponding to closed Riemann surfaces and the other contains the
vertices associated with bordered Riemann surfaces. For the former, the action will
be given in (5.2). Taking all symmetries of vertices with open and closed inputs into
account, we can write the part of the action for the latter as

∑
n

∑
m1,...,mb

h̄2g+b+n/2−1 f
b,g
n,m1,...,mb

(c, a) = 1

b! h̄
2g+b−1f b,g(eh̄

1/2c; ēa, . . . , ēa︸ ︷︷ ︸
b times

) ,
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where f b,g ∈ Hom(T Vc,C) ⊗ (Homcycl(T Vo,C))∧b . Furthermore, ēa:=∑∞
n=1

1
n
a⊗n and T Vo denotes the tensor algebra of Vo. To summarize, the full

BV-quantum action of open-closed string field theory can be expressed as

S =
∞∑
g=0

h̄2g−1ωc(l
g, ·)(eh̄1/2c)+

∞∑
b=1

∞∑
g=0

1

b! h̄
2g+b−1f b,g(eh̄

1/2c; ēa, . . . , ēa︸ ︷︷ ︸
b times

) .

5.2 QuantumOpen-Closed Homotopy Algebra

In order to give an algebraic interpretation of the quantum open-closed string field
theory, we first have to identify the algebraic structure on Vc and Homcycl(T Vo,C).
In the last part of this section we will connect the open and closed string part by
an IBL∞-morphism and finally define the quantum open-closed homotopy algebra,
that is, the algebraic structure of quantum open-closed string field theory.

As stated in Sect. A.1, the space of cyclic coderivations Codercycl(T A) is a Lie
algebra, with Lie bracket

[D1,D2] = D1 ◦D2 − (−1)|D1||D2|D2 ◦D1.

If A is in addition a cyclic A∞-algebra (A,M,ω), the space Codercycl(T A)
becomes a dgla, where the differential is defined by dH = [M,−]. First we will
transfer the dgla structure from Codercycl(T A) to the cyclic Hochschild complex
A := Homcycl(A,C). Let f, g ∈ A , with both having at least one input. We define
associated maps in Homcycl(T A,A) by

ω(df ,−) := f , ω(dg,−) := g ,

and lift them to cyclic coderivations Df ,Dg ∈ Codercycl(T A). We define the
Gerstenhaber bracket on the cyclic Hochschild complex A by

[f, g] := (−1)|f |+1ω
(
π1 ◦ [Df ,Dg],−

)
. (5.2)

In the case where one of the maps f, g ∈ A has no inputs, we define the commutator
to be identically zero. Note that the Gerstenhaber bracket as defined in (5.2) is
graded symmetric and has degree one. Thus, the structure induced on A is a
Lie algebra up to a shift in degree, that is, the actual Lie algebra lives on sA .
Furthermore, the map that associates a cyclic coderivation to an element of the cyclic
Hochschild complex defines a morphism of Lie algebras

[Df ,Dg] = (−1)|f |+1D[f,g] .
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It turns out that we can endowA with the structure of a differential involutive Lie
bialgebra, i.e., that there is a map δ : A → A ∧2 such that dH , [−,−] and δ satisfy
the defining Eqs. (B.4)–(B.10) of an IBL-algebra. We then define δ : A → A ∧2 by

(δf )(a1, . . . , an)(b1, . . . , bm)

:=(−1)|f |
n∑
i=1

m∑
j=1

(−1)εf (ek, ai , . . . , an, a1, . . . , ai−1, e
k, bj , . . . , bm, b1, . . . , bj−1) ,

where ε is the Koszul sign resulting from permutation of the entries, {ek} is a basis
of A, and {ek} denotes the corresponding dual basis with respect to the symplectic
structure ω. This definition ensures that δf has the right symmetry properties.
Furthermore, dH , [−,−] and δ satisfy all conditions (B.4)–(B.10). Now, let us
put this into the language of IBL∞-algebras. Lift the Hochschild differential, the
Gerstenhaber bracket and the cobracket δ to coderivations on SA , the symmetric
algebra over A ,

d̂H ∈ Coder(SA ) , ̂[−,−] ∈ Coder(SA ) , δ̂ ∈ Coder2(SA ) .

The statement that the maps dH , [−,−] and δ satisfy the defining relations of a
differential IBL-algebra is then equivalent to

(d̂H + ̂[−,−] + xδ̂)2 = 0 ,

where x is a formal expansion parameter which we may identify with h̄. If the
algebra A is not endowed with the structure of a cyclic A∞-algebra, the differential
dH is absent, but we still have an IBL-algebra defined by

L2
o = 0 ,

where

Lo := ̂[−,−] + xδ̂ ∈ Coder(SA , x) and |Lo| = 1 . (5.3)

We use Gothic characters for formal power series with values in coderivations. This
is the structure that will enter in the definition of the quantum open-closed homotopy
algebra. That means that we do not anticipate that the vertices of classical open
string field theory define an A∞-algebra but rather, as we will see soon, derive it
from the quantum open-closed homotopy algebra.

Now, we can put the parts together and define the quantum open-closed
homotopy algebra (QOCHA). The QOCHA is defined by an IBL∞-morphisms from
the IBL∞-algebra of closed strings to the IBL-algebra of open strings

(Vc,Lc)
IBL∞−morphism−−−−−−−−−→ (Ao,Lo) , (5.4)
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where Lc ∈ coder(T Vc, h̄) is defined in Eq. (3.32) and Lo ∈ Coder(SAo, h̄)

is defined in Eq. (5.3). We use the abbreviation Ao = Homcycl(T Vo,C). More
precisely, we have an IBL∞-morphism F ∈ Morph(Vc,Ao, h̄), that is,

F ◦ Lc = Lo ◦ F and |F| = 0. (5.5)

The morphism F is determined by a map f through (see Eq. (B.11) and (B.12))

F =
∞∑
n=0

1

n! f
∧n ◦Δn ,

where

f =
∞∑
b=1

∞∑
g=0

h̄g+b−1f b,g ,

and

f b,g : T Vc → A ∧b
o .

In order to gain a better geometric intuition of (5.5), it is useful to disentangle this
equation. First consider the left-hand side of Eq. (5.5). We have

Δn ◦ Lg =
∑

i+j=n−1

(1⊗i ⊗ Lg ⊗ 1⊗j ) ◦Δn

and

Δn ◦D(ω−1
c ) =

∑
i+j=n−1

(
1⊗i ⊗D(ω−1

c )⊗ 1⊗j
)
◦Δn

+
∑

i+j+k=n−2

(
1⊗i ⊗D(ei)⊗ 1⊗j ⊗D(ei)⊗ 1⊗k

)
◦Δn ,

where D denotes the coderivation of order one defined by

π1 ◦D(ei) = ei .
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In the following, we abbreviate Lq =∑g h̄
gLg . We get

F ◦ Lc =
∞∑
n=0

1

n!
∑

i+j=n−1

(f∧i ∧ f ◦ (Lq + h̄D(ω−1
c )) ∧ f∧j ) ◦Δn

+
∞∑
n=0

1

n!
∑

i+j+k=n−2

h̄
(
f∧i ∧ f ◦D(ei) ∧ f∧j ∧ f ◦D(ei) ∧ f∧k

)
◦Δn

=
((

f ◦ Lc + 1

2
h̄(f ◦D(ei) ∧ f ◦D(ei)) ◦Δ

)
∧ F

)
◦Δ .

Let us turn to the right-hand side of Eq. (5.5). There we have the maps δ̂ and
̂[−,−]. The defining map δ = π2 ◦ δ̂ of δ̂ has two outputs and one input. Recall that
the order of a coderivation is the number of outputs of the underlying defining map
(see Sect. B.1). Similarly, we can define higher order derivations by the number of
inputs of the underlying defining map. So we can interpret δ̂ either as a second order
coderivation or as a first order derivation, and ̂[−,−] as a first order coderivation or
as a second order derivation. For our purpose, the second point of view will be more
useful. Having these properties in mind, one can show that

δ̂ ◦ F = (̂δ ◦ f ∧ F
) ◦Δ

and

̂[−,−]◦F =
((

̂[−,−]◦ f+ 1

2
̂[−,−]◦(f∧ f

)◦Δ−((̂[−,−]◦ f)∧ f
)◦Δ)∧F

)
◦Δ .

Besides the properties of δ̂ and ̂[−,−], we also used cocommutativity and coasso-
ciativity of Δ. Thus we can equivalently define the QOCHA by

f ◦ Lc + h̄

2

(
f ◦D(ei) ∧ f ◦D(ei)) ◦Δ (5.6)

= Lo ◦ f+ 1

2
̂[−,−] ◦ (f ∧ f

) ◦Δ−
(
(̂[−,−] ◦ f) ∧ f

)
◦Δ .

The individual terms in Eq. (5.6) can be identified with the five distinct sewing
operations of bordered Riemann surfaces with closed string insertions (punctures
in the bulk) and open string insertions (punctures on the boundaries). The sewing
joins either two open string insertions or two closed string insertions. In addition,
the sewing may involve a single surface or two surfaces.

(1) Take an open string insertion of one surface and sew it with another open string
insertion on a second surface. The genus of the resulting surface is the sum of the
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genera of the individual surfaces, whereas the number of boundaries decreases
by one. This operation is identified with

1

2
̂[−,−] ◦ (f ∧ f

) ◦Δ−
(
(̂[−,−] ◦ f) ∧ f

)
◦Δ .

(2) Sewing of two open string insertions living on the same boundary. This
operation obviously increases the number of boundaries by one but leaves the
genus unchanged. It is described by

δ̂ ◦ f ,

in the homotopy algebra.
(3) Consider a surface with more than one boundary. Take an open string insertion

of one boundary and sew it with another open string insertion on a second
boundary. This operation increases the genus by one and decreases the number
of boundaries by one. It is identified with

̂[−,−] ◦ f .

(4) Sewing of two closed string insertion, both lying on the same surface attaches a
handle to the surface and hence increases the genus by one, whereas the number
of boundaries does not change. We identify it with

f ◦D(ω−1
c ) .

(5) Take a closed string insertion of one surface and sew it with another closed
string insertion on a second surface. The genus and the number of boundaries
of the resulting surface is the sum of the genera and the sum of the number of
boundaries, respectively, of the input surfaces. The sewing in the case where
both surfaces have open and closed insertions is identified with

(
f ◦D(ei) ∧ f ◦D(ei)) ◦Δ ,

whereas the sewing involving a surface with closed string insertions only and
another surface with open and closed string insertions is identified with

f ◦ Lq .

The above analysis provides the geometric interpretation of all individual terms
in (5.6).

Let us now focus on the vertices with open string insertions only. These vertices
are also comprised in the IBL∞-morphism F and defined by setting the closed string
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inputs to zero. More precisely, let m = f| be the restriction of f onto the subspace
without closed strings. The weighted sum of open string vertices is then given by

m =
∞∑
b=1

∞∑
g=0

h̄g+b−1mb,g , mb,g ∈ A ∧b
o ,

where mb,g = f b,g|. The complement of m—the vertices with at least one closed
string input—is denoted by g, so that

f = m+ g . (5.7)

Remark 5.1 In the classical limit h̄ → 0, we expect to recover the OCHA
defined by Kajiura and Stasheff. Indeed, the IBL∞-morphism F reduces to an
L∞-morphism, the loop algebra Lc of closed strings reduces to the L∞-algebra
Lcl := L0 and the IBL-algebra on the space of cyclic coderivations becomes an
ordinary Lie algebra. The defining Eq. (5.6) of the QOCHA simplifies to

fcl ◦ Lcl = 1

2
[fcl, fcl ] ◦Δ , (5.8)

where fcl := f 1,0 is the component of f with one boundary and genus zero and
the corresponding L∞-morphism is given by

∑
n

1
n!fcl

∧n ◦ Δn (see Sect. A.2).
Separating the purely open string vertices mcl from fcl , we see that those have to
satisfy the axioms of an A∞-algebra (since Lcl | = 0), i.e., they define a classical
open string field theory. Thus, the space Ao turns into a dgla with differential
dH = [mcl,−] and Eq. (5.8) finally reads

ncl ◦ Lcl = dH ◦ ncl + 1

2
[ncl, ncl ] ◦Δ , (5.9)

where ncl = fcl − mcl : T Vc → Ao denotes the vertices with at least one closed
string input and one non-empty boundary.

Similarly, we define n = f−m and the QOCHA in terms of n reads

N ◦ Lc = L′o ◦N , (5.10)

where N =∑∞
n=0

1
n!n

∧n ◦Δn and L′o = d̂H + Lo.
Equation (5.9) is precisely the OCHA. The physical interpretation of ncl is that

it describes the deformation of open string field theory by turning on a closed string
background. The vanishing of the right-hand side is the condition for a consistent
classical field theory of open strings, while the left-hand side vanishes if the closed
string background solves the classical closed string field theory equations of motion.
Equation (5.9) then implies that the open-closed vertices define a consistent classical
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open string field theory if the closed string background satisfies the classical closed
string equations of motion. The inverse assertion does not follow from (5.9).
However, it holds true for infinitesimal closed string deformations. More precisely,
upon linearizing equation (5.9) in c ∈ Vc we get

ncl(Lcl(c)) = dH (ncl(c)) , (5.11)

where Lcl ∈ Codercycl(T Vc) is determined by lcl = π1 ◦ Lcl ∈ Homcycl(T Vc), the
closed string vertices of genus zero (see Sect. A.2). In string field theory, the vertex
with just one input (lcl)1 is the closed string BRST operator Qc. Thus Eq. (5.11) is
equivalent to

ncl(Qc(c)) = dH (ncl(c)) ,

that is, ncl ◦ i1 induces a chain map from the BRST complex of closed strings to
the cyclic Hochschild complex of open strings. The cohomology of Qc (BRST
cohomology) defines the space of physical states, whereas the cohomology of dH
(cyclic cohomology) characterizes the infinitesimal deformations of the initial open
string field theory mcl as discussed in Sect. 4.2. There we have seen that the
BRST cohomology of closed strings is indeed isomorphic to the cyclic Hochschild
cohomology of open strings.

5.3 Summary, Comment, and Remarks Towards Part II

The detailed discussion of the open-closed SFT in Sect. 5.2 is taken from the point
of view of IBL∞-algebras and their morphisms. Nevertheless, the description of
geometric vertices νb,gn,m as well of the open-closed SFT action in (5.1) can directly
be interpreted in the spirit of Fig. 1.1. As already noticed, this construction would
be a rather straightforward combination of the open and closed theories.

The starting point would be the open-closed modular operad. Since we are not
going to describe it in full detail, we at least indicate its nature here. It is a two-
colored operad with colors corresponding to open and closed strings (punctures),
respectively. In terms of corollas used in Part II, we would have to consider corollas
with two kinds of legs. This can be pictured informally as follows. Think about
bordered Riemann surfaces with punctures both on the boundaries (open ones) as
well as in the bulk (closed ones). We allow also boundaries with no punctures. Now,
forget about all the structure but genus, number of boundaries, number of closed
punctures, and the distribution of punctures on the boundaries. What we have are
corollas remembering the genus and having their legs colored as open or closed,
the open ones grouped together accordingly to their respective boundaries. There is
an obvious two-fold action of permutations, we can either permute closed punctures
between themselves or open punctures between themselves. We allow for permuting
of punctures between different boundaries, but we do not allow for permutations
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mixing up mutually closed and open punctures. Also operations sewing together
open and closed punctures are forbidden. Sewing and self-sewing operations within
the two separate sectors remain the same as described before.

The open-closed geometric vertices ν
b,g
n,m satisfying the (geometric) quantum

BV master equation result from a decomposition of the moduli space of bordered
Riemann surfaces with punctures both in the bulk as well as on the boundary
components. Again, it can be understood as an odd modular operad morphism going
from the (two-colored version of) Feynman transform of the above described open-
closed modular operad to the moduli space operad, cf. discussion in Sects. 3.8
and 4.3. The latter one is the odd modular operad on singular chain complex
with operations induced from properly defined sewing/self-sewing of the Riemann
surfaces. As briefly mentioned in Sect. 5.1, the decomposition of the moduli spaces
comes as a solution to the corresponding minimal area problem. This is a rather
informal description of the horizontal morphism of Fig. 1.1 in the present situation.

The vertical arrow in Fig. 1.1 is the morphism from the odd moduli space operad
to the open-closed endomorphism operad provided by the open-closed CFT. Recall
that the CFT state space V = Vo ⊕ Vc is equipped with the odd symplectic form
ωo + ωc. The morphism is described similarly as in the closed case, cf. (3.22).
The resulting action (5.1) is the generating function of the quantum open-closed
operations f b,g

n,m, these are graded symmetric functions of closed states. The graded
symmetry with respect to the open states holds for cyclic permutations within
a boundary component and for permutations of the whole boundary components.

Recall, cf. Sect. 3.8, that the main difference of the IBL∞ interpretation of
the closed SFT algebra, as opposed to the loop homotopy algebra, was that
we considered, together with the n-ary brackets l

g
n , also the BV operator Δ as

a special cobracket with zero inputs and two outputs. The resulting structure
is naturally described in the dual description by the nilpotent full BV operator
h̄Δ + {S,−}. Obviously, starting from a quantum A∞-algebra we could do the
same. However, this is not what is used for the interpretation/description of the
quantum-open homotopy algebra in Sect. 5.2. There, the starting point for the
description of the open sector is the cyclic Hochschild complex equipped with an
IBL-algebra structure. Roughly speaking, now we think of the inputs/outputs of
interactions being disc with open string insertions, not the open strings themselves.
So “sewing” two discs with open string insertions using the odd symplectic form
gives the multiplication, whereas the self-sewing gives the comultiplication. The
algebraic vertices are formally split into two groups, the ones corresponding to
closed strings exclusively and the remaining ones. The latter ones correspond to an
IBL∞-morphism form the IBL∞-algebra corresponding to closed strings to the IBL-
algebra on the cyclic Hochschild complex of the open sector. The corresponding
mathematical structures are elucidated in the following appendix to Part I and in
Part II, Sect. 8.3.
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Field Theory”, Commun. Math. Phys. 321 (2013) 769.

For a detailed description of the IBL∞ algebra underlying quantum closed string
theory see

• K. Cieliebak, K. Fukaya and J. Latschev, “Homological algebra related to
surfaces with boundary”, arXiv:1508.02741.

A detailed description of the open-closed modular operad can be found in

• M. Doubek and M. Markl, “Open-closed modular operads, the Cardy condition
and string field theory”, J. Noncommut. Geom. 12(4)(2018), 1359–1424.

The quantum open-closed homotopy algebra and its operadic origin are dis-
cussed in

• M. Doubek, B. Jurčo and K. Münster, “Modular operads and the quantum open-
closed homotopy algebra”, JHEP 2015(12), 1–55.



AA∞- andL∞-Algebras

We review definitions of A∞- and L∞-algebras. In the following A = ⊕
n∈ZAn

will denote a graded vector space over some field k of characteristic 0 (more
generally we could consider a module A over some commutative ring R with
unit containing rational numbers). We will use the Koszul sign convention, that is,
we generate a sign (−1)xy whenever we permute two objects x and y with their
respective degrees denoted by the same symbols. If we permute several object, we
abbreviate the Koszul sign by (−1)ε . To simplify the exposition, we will assume in
this appendix all homogeneous pieces of the underlying graded vector spaces to be
finite-dimensional.

A.1 A∞-Algebras

Let us consider the tensor algebra of A

TA =
∞⊕
n=0

A⊗n ,

and the comultiplication Δ : T A→ T A⊗ TA defined by

Δ(a1 ⊗ · · · ⊗ an) =
n∑
i=0

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an) .

The comultiplication Δ makes T A a coassociative coalgebra, i.e.,

(Δ⊗ 1) ◦Δ = (1⊗Δ) ◦Δ .
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In addition we have the obvious canonical projection maps πn : TA → A⊗n and
the inclusion maps in : A⊗n → T A. A coderivation D ∈ Coder(T A) is a linear
map having the property

(D ⊗ 1+ 1⊗D) ◦Δ = Δ ◦D . (A.1)

The defining property (A.1) implies that a coderivationD ∈ Coder(T A) is uniquely
determined by a map d ∈ Hom(T A,A), i.e., Coder(T A) ∼= Hom(T A,A).
Explicitly the correspondence reads

D ◦ in =
∑

i+j+k=n
1⊗i ⊗ dj ⊗ 1⊗k ,

where dn := d ◦ in,1 denotes the identity map on A and d = π1 ◦ D. The
space of coderivations Coder(T A) turns out to be a Lie algebra with the Lie bracket
defined by

[D1,D2] := D1 ◦D2 − (−1)D1D2D2 ◦D1 .

An A∞-algebra is determined by a coderivation M ∈ Coder(T A) of degree 1
(degree −1 is considered if m1 is supposed to be a boundary operator rather than a
coboundary operator) that squares to zero,

M2 = 1

2
[M,M] = 0 and |M| = 1 .

The corresponding homomorphism is defined by m := π1 ◦M .
In the case where only m1 and m2 are non-vanishing, we recover the definition

of a differential graded associative algebra up to a shift: Take A[1] =↑A to be the
graded vector space defined by (↑A)i = Ai−1. One has the map ↑: A→↑A whose
only effect is increasing the degree by 1. Likewise, its inverse map ↓:↑ A → A

decreases the degree by one. The maps corresponding to the shifted space ↑A are
defined by

m̃n :=↑◦mn ◦ (↓)⊗n : (↑A)⊗n →↑A .

The operations m̃1 and m̃2 then determine a differential graded associative algebra,
if mn = 0 for n ≥ 3.

Consider now two A∞-algebras (A′,M ′) and (A′′,M ′′). An A∞-morphism F ∈
Morph(A′, A′′) from (A′,M ′) to (A′′,M ′′) is a degree 0 linear map F : T A′ →
TA′′ satisfying

Δ ◦ F = (F ⊗ F) ◦Δ , F ◦M ′ = M ′′ ◦ F. (A.2)
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The first equation in (A.2) implies that a morphism F ∈ Morph(A′, A′′) is
determined by a map f ∈ Hom(T A′, A′′). The explicit relation reads

F =
∞∑
n=0

f⊗n ◦Δn ,

where Δn : TA′ → T A′⊗n denotes the (n−1)-fold comultiplication and f =
π1 ◦ F . We use the convention that Δ1 := 1 and that Δ0 equals the unit in the
field k. An important property is that the composition of two A∞-morphisms is
again an A∞-morphism, i.e., for F ∈ Morph(A′, A′′) and G ∈ Morph(A′′, A′′′),
G ◦ F ∈ Morph(A′, A′′′). This is a direct consequence of Eq. (A.2).

The concept of Maurer–Cartan elements of A∞-algebras is closely related to that
of A∞-morphisms. We define the exponential in the completion T̂ A of T A as

ea :=
∞∑
n=0

a⊗n .

A Maurer–Cartan element a ∈ A of an A∞-algebra (A,M) is a degree zero element
that satisfies

M(ea) = 0 ⇔
∞∑
n=0

mn(a
⊗n) = 0 .

Note that Δ(ea) = ea ⊗ ea . Thus we can interpret the exponential ea of a Maurer–
Cartan element a ∈ A as a constant morphism from the trivial A∞ algebra to
(A,M), that is, f0 = a and fn = 0 for all n ≥ 1. Since we know that the
composition of two A∞-morphisms is again an A∞-morphism and that a Maurer–
Cartan element can be interpreted as a constant A∞-morphism, it follows that an
A∞-morphism sends Maurer–Cartan elements into Maurer–Cartan elements. The
same statement is true for L∞-algebras (see Sect. A.2).

The language of coderivations is also useful for describing deformations of
A∞-algebras. Deformations of an A∞-algebra (A,M) are controlled by the dif-
ferential graded Lie algebra Coder(T A) with differential dh := [M,−] and bracket
[−,−]. Since Coder(T A) ∼= Hom(T A,A), dh and [−,−] have their counterparts
defined on Hom(T A,A), namely the Hochschild differential and the Gerstenhaber
bracket. An infinitesimal deformation of an A∞-algebra is characterized by the
Hochschild cohomology H 1(dh,Coder(T A)), i.e., the cohomology of dh at degree
1. A deformation of an A∞-algebra is an element D ∈ Coder(T A) of degree 1 that
satisfies the Maurer–Cartan equation

dh(D)+ 1

2
[D,D] = 0 ⇔ (M +D)2 = 0 .
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We will need one more concept in the context of A∞-algebras which is called the
cyclicity. Assume that A is an A∞-algebra whose underlying graded vector space is
additionally endowed with an odd symplectic structure ω : A ⊗ A → k of degree
−1. We call d ∈ Hom(T A,A) cyclic if the multilinear map

ω( d ,−) : T A→ k

is cyclically symmetric, i.e.,

ω(dn(a1, . . . , an), an+1) = (−1)εω(dn(a2, . . . , an+1), a1) .

Since we have the notion of cyclicity for Hom(T A,A), we also have the notion
of cyclicity for Coder(T A) due to the isomorphism Coder(T A) ∼= Hom(T A,A).
We denote the space of cyclic coderivations by Codercycl(T A). An A∞-algebra
(A,M,ω) is called a cyclic A∞-algebra if M ∈ Codercycl(T A). It is straight-
forward to prove that Codercycl(T A) is closed with respect to the Lie bracket
[−,−], and thus we can consider deformations of cyclic A∞-algebras which are
controlled by the differential graded Lie algebra Codercycl(T A). The cohomology
H(dh,Codercycl(T A)) is called the cyclic cohomology.

A.2 L∞-Algebras

Many of the constructions in the context of L∞-algebras are analogous to those of
A∞-algebras. The main difference is that the definition of an L∞-algebra is based
on the graded symmetric algebra SA instead of the tensor algebra TA. The graded
symmetric algebra SA is defined as the quotient T A/I , where I denotes the two-
sided ideal generated by the elements

c1 ⊗ c2 − (−1)c1c2c2 ⊗ c1, c1, c2 ∈ A.

The product ⊗ defined in T A induces the graded symmetric product ∧ in SA. The
symmetric algebra is the direct sum of the symmetric powers of A,

SA =
∞⊕
n=0

A∧n .

All that is simply saying that an element c1 ∧ · · · ∧ cn ∈ A∧n is graded symmetric,
that is

cσ1 ∧ · · · ∧ cσn = (−1)εc1 ∧ · · · ∧ cn
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for any permutation σ ∈ Σn, where Σn denotes the permutation group of n

elements. Here, the elements ci are assumed to be of a definite degree and ε is
the Koszul sign. The comultiplication Δ : SA→ SA⊗ SA is defined by

Δ(c1, · · · , cn) =
n∑
i=0

∑′

σ

(cσ1 ∧ · · · ∧ cσi )⊗ (cσi+1 ∧ · · · ∧ cσn) ,

where
∑′

σ indicates the sum over all permutations σ ∈ Σn constrained to

σ1 < · · · < σi and σi+1 < · · · < σn.

A coderivation D ∈ Coder(SA) is a linear map satisfying

(D ⊗ 1+ 1⊗D) ◦Δ = Δ ◦D . (A.3)

Again, the isomorphism Coder(SA) ∼= Hom(SA,A) holds. The correspondence
between a coderivation D ∈ Coder(SA) and its associated map d = π1 ◦D ∈
Hom(SA,A) is given by

D ◦ in =
∑

i+j=n

∑′

σ

(di ∧ 1∧j ) ◦ σ ,

where σ in the right-hand side denotes the map that sends c1 ∧ · · · ∧ cn into
(−1)εcσ1 ∧ · · · ∧ cσn (again dn = d ◦ in and 1 is the identity map on A).

An L∞-algebra is determined by a coderivation L ∈ Coder(SA) of degree 1 that
squares to zero,

L2 = 0 and |L| = 1 .

An L∞-morphism F ∈ Morph(A′, A′′) from an L∞-algebra (A′, L′) to another
L∞-algebra (A′′, L′′) is a degree 0 linear map F : SA→ SA such that

Δ ◦ F = (F ⊗ F) ◦Δ , F ◦ L′ = L′′ ◦ F. (A.4)

Such an F is determined by a map f = π1 ◦ F ∈ Hom(SA,A′) through

F =
∞∑
n=0

1

n!f
∧n ◦Δn , (A.5)

where Δn : SA→ (SA)⊗n denotes the (n−1)-fold comultiplication.
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Analogously to A∞-algebras, a Maurer–Cartan element c ∈ A of an L∞-algebra
(A,L) is essentially a constant morphism from the trivial L∞-algebra k sending
1 ∈ k to c, that is,

L(ec) = 0 and |c| = 0 ,

where the exponential, in the completion of the symmetric algebra, is given by

ec =
∞∑
n=0

1

n!c
∧n

and satisfies Δ(ec) = ec ⊗ ec.
Finally, there is also the notion of cyclicity in the context of L∞-algebras. Let

(A,L) be a L∞-algebra whose underlying vector space is equipped with an odd
symplectic structure ω of degree −1. We call a coderivation D ∈ Coder(SA) cyclic
if the corresponding multilinear map ω( d,−) is graded symmetric, i.e.,

ω(dn(cσ1, . . . , cσn), cσn+1) = (−1)εω(dn(c1, . . . , cn), cn+1) .

We denote the space of cyclic coderivations by Codercycl(SA).
As a simple illustration of L∞-morphisms we give a background shift in closed

string field theory. Consider the classical action of closed string field theory, the
theory with genus zero vertices lcl only. The corresponding coderivationLcl defines
an L∞-algebra and the action reads

Sc,cl = ωc(lcl,−)(ec) .

Shifting the background simply means that we expand the string field c around
c′ rather than around zero. The action in the new background is ωc(lcl,−)(ec′+c).
Hence, the vertices lcl[c′] in the shifted background read

lcl[c′] = lcl ◦ E(c′) ,

where E(c′) is the map defined by

E(c′)(c1 ∧ · · · ∧ cn) = ec
′ ∧ c1 ∧ · · · ∧ cn .

In the language of homotopy algebras, this shift is implemented by

Lcl [c′] = E(−c′) ◦ Lcl ◦ E(c′) .

Obviously, E(−c′) is the inverse map of E(c′). Furthermore,

Δ ◦ E(c′) = E(c′)⊗ E(c′)
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and therefore Lcl[c′] defines also an L∞-algebra. Thus, E(c′) is an L∞-morphism.
There is a subtlety if the new background does not satisfy the field equations. The
initial L∞-algebra is determined by the vertices (lcl )n where there is no vertex for
n = 0, i.e., (lcl)0 = 0. A non-vanishing (lcl)0 would correspond to a term in the
action that depends linearly on the field. In the new background we get

(lcl[c′])0 =
∞∑
n=0

1

n! (lcl)n(c
′∧n) ,

and thus the L∞-algebra Lcl [c′] has no n = 0 vertex only if c′ satisfies the field
equations. In general, the new l1 operation is no longer a differential of A, instead
we have l1 ◦ l1 + l2 ◦ (l0 ∧ 1) = 0, i.e., we have a curved L∞-algebra.
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Homotopy algebras as reviewed in Appendix A are suitable for describing the
algebraic structures of classical open-closed string field theory. If one tries to
describe quantum open-closed string field theory—with the set of vertices satisfying
the full quantum BV master equation—in the framework of homotopy algebras,
the appropriate language is that of homotopy involutive Lie bialgebras, or IBL∞-
algebras.1 An IBL∞-algebra is a generalization of an L∞-algebra. Its axioms are
formulated in terms of higher order coderivations—a concept that will be introduced
in the next section—and requires an auxiliary parameter x ∈ k (later on we will
identify that parameter with h̄). We will also recall the notion of morphisms and
Maurer–Cartan elements in the context of IBL∞-algebras. Our exposition is based
on work of Cieliebak, Fukaya, and Latschev cited at the end of Chap. 5. In the
following, we collect their results (in a slightly different notation) to make our
exposition self-contained. An alternative description is provided by Sect. 8.3.

B.1 Higher Order Coderivations

We already know what a coderivation (of order one) on SA is, cf. Eq. (A.3). We
defined it by an algebraic equation involving the comultiplicationΔ. The essence of
that equation was that a coderivation D ∈ Coder(SA) was uniquely determined by
a homomorphism d ∈ Hom(SA,A). Explicitly we had

D ◦ in =
∑

i+j=n

∑′

σ

(di ∧ 1∧j ) ◦ σ , (B.1)

where π1 ◦D = d .

1As we already mentioned, an alternative description using the language of quantum open-closed
homotopy algebra is also possible.
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There are two ways to define higher order coderivations. One is based on
algebraic relations like that in Eq. (A.3). A coderivation of order two is, for example,
characterized by

Δ3 ◦D −
∑′

σ

σ ◦ (Δ ◦D ⊗ 1) ◦Δ+
∑′

σ

σ ◦ (D ⊗ 1⊗2) ◦Δ3 = 0 ,

where
∑′

σ denotes the sum over inequivalently acting permutations in Σ3, the
permutation group of three elements, and σ : SA⊗3 → SA⊗3 is the map that
permutes the three factors. For completeness we state an algebraic definition of a
coderivation D ∈ Codern(SA) of order n,

n∑
i=0

∑′

σ

(−1)iσ ◦ (Δn+1−i ◦D ⊗ 1⊗i ) ◦Δi+1 = 0 . (B.2)

As in the case of a coderivation of order one, this relation is saying—and this is
an alternative definition of higher order coderivations—that a coderivation D ∈
Codern(SA) of order n is uniquely determined by a map d ∈ Hom(SA,ΣnA),
where ΣnA = ⊕n

i=0A
∧i . Thus in contrast to a coderivation of order one, a

coderivation of order n is determined by a linear map on SA with n and less outputs
rather than just one output. The explicit relation between D ∈ Codern(SA) and
d ∈ Hom(SA,ΣnA) is

D ◦ in =
∑

i+j=n

∑′

σ

(di ∧ 1∧j ) ◦ σ ,

which is a naive generalization of Eq. (B.1).
A trivial observation is that a coderivation of order n− 1 is also a coderivation of

order n, by simply defining the component with n outputs to be zero, that is,

Codern−1(SA) ⊂ Codern(SA) .

We call a coderivation D ∈ Codern(SA) of order n a strict coderivation of order n
if the corresponding map d is in Hom(SA,A∧n), that is, if the map d has exactly n
outputs. In that case we can identify d = πn ◦D.

Next recall the graded commutator

[D1,D2] = D1 ◦D2 − (−1)D1D2D2 ◦D1 ,

where D1,D2 are arbitrary higher order coderivations. Using the defining equations
(B.2), it can be shown that

[Coderi (SA),Coderj (SA)] ⊂ Coderi+j−1(SA) . (B.3)
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In the case i = j = 1 we recover that [−,−] defines a Lie algebra on Coder1(SA),
but we see that [−,−] does not define a Lie algebra at higher orders n > 1. Of
course, we can make the collection of all higher order coderivations a Lie algebra,
but in the next section we will see that there is still a finer structure.

B.2 IBL∞-Algebras

Now we have all tools to define IBL∞-algebras. We will furthermore see that one
recovers an involutive Lie bialgebra (IBL-algebra) as a special case of an IBL∞-
algebra. Consider the space

Coder(SA, x) :=
∞⊕
n=1

xn−1Codern(SA) ,

where x ∈ k is some auxiliary parameter. An element D ∈ Coder(SA, x) can be
expanded as

D =
∞∑
n=1

xn−1D(n) ,

where D(n) ∈ Codern(SA). In the following, we will indicate coderivations of order
n by the superscript (n) and strict coderivations of order n by the superscript n.
We can decompose every coderivation of order n into strict coderivations of order
smaller than or equal to n. Accordingly, we denote the strict coderivation of order
n−g corresponding to a coderivationD(n) of order n by Dn−g,g, g ∈ {0, . . . , n−1}
(in the main text g was identified as the genus). Thus, we have

D(n) =
n−1∑
g=0

Dn−g,g ,

and D expressed in terms of strict coderivations reads

D =
∞∑
n=1

∞∑
g=0

xn+g−1Dn,g .

Due to Eq. (B.3), we have

[D1,D2] ∈ Coder(SA, x) ,

that is, the commutator [−,−] turns Coder(SA, x) into a graded Lie algebra. The
space Coder(SA, x) is the Lie algebra on which our definition of IBL∞-algebras
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is based. From a conceptual point of view, nothing new happens in the definition of
IBL∞-algebras when compared to the one ofL∞- andA∞-algebras. The difference
is essentially that the underlying objects are more complicated. An IBL∞-algebra
is defined by an element L ∈ Coder(SA, x) of degree 1 that squares to zero:

L2 = 0 and |L| = 1 .

For completeness, we will now describe IBL-algebras as a special case of
IBL∞-algebras. Consider an element L ∈ Coder(SA, x) that consists of a strict
coderivation of order one and a strict coderivation of order two only:

L = L1,0 + xL2,0 .

Furthermore, we restrict to the case where the only non-vanishing components of
l1,0 := π1 ◦ L1,0 : SA→ A and l2,0 := π2 ◦ L2,0 : SA→ A∧2 are

d := l1,0◦i1 : A→ A , [−,−] := l1,0◦i2 : A∧2 → A , δ := l2,0◦i1 : A→ A∧2 .

To recover the definition of an involutive Lie bialgebra, we have to shift the degree
by one (see Appendix A), i.e., we define the operations on the shifted space ↑A by

d̃ :=↑◦d◦ ↓ , ˜[−,−] := ↑◦[−,−] ◦ (↓)∧2 , δ̃ :=↑∧2 ◦ δ◦ ↓ .

The requirement L2 = 0 is then equivalent to the following seven conditions

d̃2 = 0, (B.4)

d̃ ˜[−,−] + ˜[−,−] (d̃ ∧ 1+ 1 ∧ d̃) = 0, (B.5)

(d̃ ∧ 1+ 1 ∧ d̃) δ̃ + δ̃ d̃ = 0, (B.6)

∑′
σ
˜[−,−] (˜[−,−] ∧ 1) σ = 0, (B.7)

∑′
σ σ (̃δ ∧ 1+ 1 ∧ δ̃) δ̃ = 0, (B.8)

∑′
σ (

˜[−,−] ∧ 1) σ (̃δ ∧ 1+ 1 ∧ δ̃)+ δ̃ ˜[−,−] = 0, and (B.9)

˜[−,−] δ̃ = 0. (B.10)

In the above display, (B.4) means that d̃ is a differential, (B.5) that d̃ is a derivation

for ˜[−,−], (B.6) that d̃ is a derivation for δ̃, (B.7) is the Jacobi identity for
˜[−,−], (B.8) is the co-Jacobi identity for δ̃, (B.9) is the compatibility between

δ̃ and ˜[−,−], and (B.10) is the involutivity. We recognize the axioms defining a
differential involutive Lie bialgebra.
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B.3 IBL∞-Morphisms andMaurer–Cartan Elements

An L∞-morphism was defined by two equations (A.4). The first one involves the
comultiplication and implies that an L∞-morphism can be expressed by a linear
map from SA to A, cf. (A.5). We do not know of a suitable generalization of the
first equation in (A.4) to the case of IBL∞-algebras, but instead one can easily
generalize Eq. (A.5). The second equation of (A.4) is just saying that the morphism
commutes with the differentials and looks identically in the case of IBL∞-algebras.

Let (A′,L′), (A′′,L′′) be IBL∞-algebras. An IBL∞-morphism F ∈
Morph(A′, A′′, x) is defined by

F =
∞∑
n=0

1

n! f
∧n ◦Δn , F ◦ L′ = L′′ ◦ F and |F| = 0 , (B.11)

where

f =
∞∑
n=0

xn−1f (n) and f (n) : SA′ → ΣnA′′ .

The precise meaning of the morphism F can be found in Part II, Sect. 8.3, especially
Lemma 8.2. Recall that ΣnA′′ = ⊕n

i=1A
′′∧i . We can therefore decompose f (n) into

a set of maps f n−g,g : SA′ → A′′∧n−g, g ∈ {0, . . . , n − 1} in the same way as we
decomposed higher order coderivations. Expressed in terms of maps f n,g we have

f =
∞∑
n=1

∞∑
g=0

xn+g−1f n,g . (B.12)

Due to the lack of an algebraic relation governing the structure of an IBL∞-
morphism—an equation generalizing the first equation in (A.4)—it is not obvious
that the composition of two morphisms yields again a morphism. Nevertheless, this
can be shown to be true.

To complete this section, we finally state what a Maurer–Cartan element of an
IBL∞-algebra (A,L) is. Let cn,g ∈ A∧n be of degree zero. The expression c =∑∞

n=1
∑∞

g=0 x
n+g−1cn,g is called a Maurer–Cartan element of (A,L) if

L(ec) = 0 .

Again we can interpret a Maurer–Cartan element as a constant morphism from the
trivial IBL∞-algebra to (A,L). Here, the exponential is defined in the same way as
in the case of L∞-algebras, i.e., ec =∑∞

n=0
1
n!c

∧n, now being a formal power series
with values in the completion of the symmetric algebra over A.



Part II

Mathematical Interpretation

Conventions Used in This Part

If not stated otherwise, all algebraic objects will be considered over a fixed field k
of characteristic zero. The symbol ⊗ will be reserved for the tensor product over k.
Given a set S, Span(S) will denote the k-vector space generated by S. We will
denote by 1X or simply by 1 when X is understood, the identity endomorphism of
an object X (set, vector space, algebra, etc.).

By C1 � C2 we denote the union of disjoint sets C1 and C2. Notice that this
operation is strictly associative and symmetric, i.e.

C1 � C2 = C2 � C1 and (C1 � C2) � C3 = C1 � (C2 � C3)

for each mutually disjoint sets C1, C2, and C3.
If not specified otherwise, by a grading we mean a Z grading. The degree of

a graded object will be denoted by |w| though we will sometimes omit the vertical
bars and write, e.g., (−1)a+b instead of (−1)|a|+|b| to save the space. We will use
the Koszul sign convention meaning that whenever we commute two “things” of
degrees p and q , respectively, we multiply the sign by (−1)pq .

By Σn we denote, for n ≥ 1, the symmetric group of n elements realized, when
necessary, as the group of automorphism of the set {1, . . . , n}. The multiplication is
given by the composition of automorphisms, i.e. στ := σ ◦ τ , and the unit is the
identity. For graded indeterminates x1, . . . , xn and a permutation σ ∈ Σn define the
Koszul sign ε(σ ) = ε(σ ; x1, . . . , xn) by

x1 · · · xn = ε(σ ; x1, . . . , xn) · xσ(1) · · · xσ(n), (1)

which has to be satisfied in the free graded commutative algebra k[x1, . . . , xn].
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For graded vector spaces V,W we denote by Link(V ,W) the vector space of
degree k morphisms V → W and by Lin(V ,W) the graded vector space

Lin(V ,W) :=
⊕
k∈Z

Link(V ,W).

If W is the ground field k, we obtain the graded dual V # := Lin(V ,k) of V .1

Notice that the degree k component of V # equals the standard linear dual (V−k)# of
the degree −k component of V . A degree k morphism f : V → W defines a map
f # : W # → V # of the same degree by the formula

f #(ϕ) := (−1)k|ϕ|ϕ ◦ f. (2)

A dg-vector space (abbreviating differential graded) is a couple (V , d) of a
graded vector space V with a degree +1 differential d . The graded dual V # of a
dg-vector space is a dg-vector space, too, with the differential d# which is the linear
dual of d .

For dg-vector spaces (V1, d1), (V2, d2) we define the differential on the tensor
product V1 ⊗ V2 by the formula

d(v1 ⊗ v2) := d1(v1)⊗ v2 + (−1)|v1|v1 ⊗ d2(v2).

This, together with the flip (commutativity constrain)

τ : V1 ⊗ V2 → V1 ⊗ V2, τ (v1 ⊗ v2) := (−1)|v1||v2|(v2 ⊗ v1), (3)

equips the category dgVec of dg-vector spaces and their morphisms of arbitrary
degrees with a structure of symmetric monoidal category enriched over the category
Chain of dg-vector spaces and their morphisms of degree 0 [1]. We will use
a Sweedler-type notation to denote elements of the tensor product V ⊗ V , i.e.
s ∈ V ⊗ V will be written as

∑
s′ ⊗ s′′ or sometimes even without the summation

symbol as s′ ⊗ s′′.
Suppose one has a structure—algebra, module, operad, etc.—with linear opera-

tions of the form

α : V ′
1 ⊗ · · · ⊗ V ′

s −→ V ′′
1 ⊗ · · · ⊗ V ′′

t ,

where V ′
1, . . . , V

′
s , V ′′

1 , . . . , V
′′
t are graded vector spaces. The dg-version of this

structure—dg-algebra, dg-module, dg-operad, etc.—is the structure with the same
operations, but now we assume that the graded spaces V ′

1, . . . , V
′
s , V

′′
1 , . . . , V

′′
t have

1We use # instead of the more usual ∗ to avoid confusion with the ∗ indicating a grading.
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differentials and the operations satisfy

d ′′α = (−1)|α|α d ′,

where d ′ (resp. d ′′) is the induced differential on the product V ′
1 ⊗ · · · ⊗ V ′

s (resp.
on V ′′

1 ⊗ · · · ⊗ V ′′
t ).

For a graded vector space V =⊕p Vp let ↑V (resp. ↓V ) denote the suspension
(resp. the desuspension) of V , i.e. the graded vector space defined by (↑ V )p =
Vp−1 (resp. (↓ V )p = Vp+1). We have the obvious natural maps ↑: V →↑ V and
↓: V →↓V .

Notation for Categories

Set The cartesian monoidal category of sets
Cor The category of sets finite sets and their isomorphisms
Cor The category of sets finite cyclically ordered sets and their isomor-

phisms
CycOp The category of cyclic operads
CycMod The category of cyclic modules
CycOp The category of non-Σ cyclic operads
CycMod The category of non-Σ cyclic modules
ModOp The category of modular operads
ModMod The category of modular modules
dgVec The category of dg-vector spaces
Chain The category of dg-vector spaces and morphisms of degree 0
Grp The category of graphs
Tre The category of trees

Notation for Functors

Des : CycOp→ CycOp The desymmetrization
Sym : CycOp→ CycOp The symmetrization
� : CycOp −→ CycMod The forgetful functor
Mod : CycMod −→ CycOp The free cyclic operad functor
� : ModOp −→ ModMod The forgetful functor
Mod : ModMod −→ ModOp The free modular operad functor
� : ModOp −→ CycOp The forgetful functor
Mod : CycOp −→ ModOp The modular completion functor

Reference

1. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol.
5, 2nd edn. Springer, New York (1998)
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In this chapter we recall various versions of operads required in this book. The
standard references are [9] or [12], plus the original sources [2, 3] and [4].

6.1 Cyclic Operads

Consider the cobweb in Fig. 6.1 consisting of white blobs symbolizing correlation
functions, and propagators represented by edges connecting some outputs of the
blobs. We want to understand which abstract properties of the contractions along
the propagators guarantee that the result of multiple contractions would not depend
on the order in which the contractions are performed.

To be more specific, assume that the inputs of the blobs are labeled by elements of
some finite sets, as {b, u, c, v} in case of the blob y of the figure, or by {0, 1, 2, 3, 4}
in the case of the blobw. We will denote, e.g., by x a◦b y the result of the contraction
along the edge e connecting the input of x labeled by a with the input of y labeled
by b, see Fig. 6.1 again.

As the first step of abstraction, we want to interpret the blobs as elements of some
abstract dg-vector spaces, for instance,

x ∈P
({p, q, r, a}), y ∈P

({b, c, u, v}), etc.

The contraction x a◦b y along the edge e is the value of a morphism

a◦b :P
({p, q, r, a})⊗P

({b, c, u, v}) −→P
({p, q, r, c, u, v}),

or, with the indexing sets conveniently decomposed,

a◦b :P
({p, q, r} ∪ {a})⊗P

({c, u, v} ∪ {b}) −→P
({p, q, r, c, u, v}).

© Springer Nature Switzerland AG 2020
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Fig. 6.1 A tree-like diagram of correlation functions and propagators

We also need a rule that would identify two blobs that differ only by relabeling the
inputs. This is abstractly expressed by requiring an action on, e.g., P

({p, q, r, a})
by the group of permutations of the set {p, q, r, a}.

Cyclic operads are abstractions of structures of blobs and propagators for the
cases when the related diagrams are simply connected, i.e., when they do not have
loops. The general case is covered by the notion of modular operads discussed in
Sect. 6.4.

Let us proceed to a precise definition. Denote by Cor the category of finite sets
and their isomorphisms. Finite sets in Cor will serve as indexing sets for the inputs
of abstract blobs. In this context we call Cor the category of corollas, whence the
notation. As usual, we denote by A1 � A2 the union of disjoint (finite) sets A1 and
A2. Two morphisms ρ : A1 → B1, σ : A2 → B2 give the obvious induced map

ρ � σ : A1 � A2 → B1 � B2.

With this terminology, we may formulate

Definition 6.1 A cyclic operad P is a family

P = {P(S) ∈ Chain | S ∈ Cor
}

of dg-vector spaces together with degree 0 morphisms

P(ρ) :P(S)→ P(T ) (6.1)
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given for any isomorphism ρ : S → T of finite sets, together with degree 0
morphisms (compositions)

a◦b :P
(
S1 � {a}

)⊗P
(
S2 � {b}

)→P(S1 � S2) (6.2)

defined for arbitrary disjoint finite sets S1, S2 and symbols a, b. These data are
required to satisfy the following axioms.

(i) One has P(1S) = 1P(S) for any finite set S, and P(ρσ) = P(ρ)P(σ ) for
arbitrary composable morphisms ρ, σ in Cor.

(ii) For arbitrary morphisms ρ : S1 � {a} → T1 and σ : S2 � {b} → T2 in Cor, one
has the equality

P
(
ρ|S1 � σ |S2

)
a◦b = ρ(a)◦σ(b)

(
P(ρ)⊗P(σ )

)

of maps P(S1 � {a})⊗P(S2 � {b})→P
(
T1 � T2 \ {ρ(a), ρ(b)}

)
.

(iii) Let τ : P(S1 � {a}
)⊗P

(
S2 � {b}

) → P
(
S2 � {b}

)⊗P
(
S1 � {a}

)
be the

flip (3). One then has the equality

a◦b = b◦a τ

of maps P
(
S1 � {a}

)⊗P
(
S2 � {b}

)→P(S2 � S1).1

(iv) For disjoint sets S1, S2, S3 and symbols a, b, c, d one has the equality

a◦b(1⊗ c◦d ) = c◦d ( a◦b⊗1) (6.3)

of maps P
(
S1 � {a}

)⊗P
(
S2 � {b, c}

)⊗P
(
S3 � {d}

)→P(S1 � S2 � S3).

The ambient category in which cyclic operads of Definition 6.1 live is the
category Chain of dg-vector spaces. This means that each P(S) is a graded vector
space with a degree +1 differential d = dP and that all structure operations of P
commute with the differentials. In particular, (6.2) is a map of dg-vector spaces,
where the tensor product P

(
S1 � {a}

)⊗P
(
S2 � {b}

)
bears the differential induced

in the standard manner. In elements this means that for x ∈ P
(
S1 � {a}) and

y ∈ P
(
S2 � {b}

)
,

d(x a◦b y) = (dx) a◦b y + (−1)|x|x a◦b(dy). (6.4)

To emphasize that P carries a differential, we will call such a P sometimes
more specifically a cyclic dg-operad. If we want to distinguish the differential dP
from other differentials that may occur in the same context, we will call it the
internal differential.

1Since S2 � S1 = S1 � S2,P(S2 � S1) = P(S1 � S2).
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Definition 6.2 A morphism Φ :P → Q of cyclic operads is a collection

Φ = {ΦS :P(S)→ Q(S) | S ∈ Cor}

of degree 0 morphisms of dg-vector spaces that commute with all structure
operations. This means that for ρ : S → T as in (6.1) the diagram

ΦT

(ρ)(ρ)

ΦS

(T )(T )

(S)(S)

commutes as does, for S1, S2, a, b as in (6.2), the diagram

a◦b

ΦS1 S21 a} ⊗ ΦS2 b}

a◦b

(S1 S2) .S1 a} ⊗ S2 b}

(S1 S2)S1 a} ⊗ S2 b}

We denote by CycOp the category of cyclic operads and their morphisms.

Remark 6.1 It should be clear that P(S) is an abstraction of the space of blobs with
inputs indexed by the elements of the finite set S. Axiom (i) of Definition 6.1 says
that the rule S 
→ P(S), ρ 
→ P(ρ) defines a covariant functor from the category
Cor to the category Chain of dg-vector spaces and their degree 0 morphisms.
Axiom (ii) describes the behavior of contractions with respect to reindexations.

Axiom (iii) says that, for any x ∈ P
(
S1 � {a}

)
and y ∈ P

(
S2 � {b}

)
,

a◦b(x ⊗ y) = (−1)|x||y| b◦a(y ⊗ x).

If we write x a◦b y instead of a◦b(x ⊗ y) and similarly for b◦a(y ⊗ x), we see
that (iii) is the graded commutativity

x a◦b y = (−1)|x||y| y b◦a x

of the contractions. Informally this means that the results of the contractions of
the edges in Fig. 6.1 do not depend, modulo the Koszul sign, on their orientations.
Likewise, axiom (iv) requiring that

a◦b(1⊗ c◦d )(x ⊗ y ⊗ z) = c◦d ( a◦b⊗1)(x ⊗ y ⊗ z)
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for x ∈ P
(
S1 � {a}

)
, y ∈ P

(
S2 � {b, c}

)
and z ∈ P

(
S3 � {d}

)
, can be written as

the associativity

x a◦b(y c◦d z) = (x a◦b y) c◦d z (6.5)

of the contraction. Geometrically it means that, e.g., in Fig. 6.1, the result of the
contraction would not depend on whether we contract the edge e first and then f , or
vice versa.

Remark 6.2 We assume that S 
→P(S), ρ 
→P(ρ) is a covariant functor, so we
have the left actions in (6.9) of the skeletal version below. The conventions when
the assignment S 
→ P(S) is contravariant and, therefore, (6.9) the right actions
are also sometimes used in the literature. The translation between these conventions
is straightforward though very technical.

Remark 6.3 The assumption that the sets S1 and S2 in (6.2) are disjoint is too
restrictive for some applications. The remedy is to use coproducts of sets instead
of their disjoint unions.

Recall that a coproduct of A1 and A2 is a set A1 A2 equipped with two
injections (coprojections) ιi : Ai → A1 A2, i = 1, 2. It is characterized by
the property that, for arbitrary set S, the assignment f 
→ (f ι1, f ι2) is a one-
to-one correspondence between maps A1 A2 → S and couples (f1, f2) of maps
fi : Ai → S. The coproduct, defined up to a canonical isomorphism, can be realized
as the (ordinary) union of disjoint copies of A1 and A2.

With these preliminaries, we define the extended a◦b-operations

a◦b :P
(
S1 � {a}

)⊗P
(
S2 � {b}

)→P(S1 S2) (6.6)

as the composition

P
(
S1 � {a}

)⊗P
(
S2 � {b}

) ∼=−→P
(
ι1(S1 � {a})

)⊗P
(
ι2(S2 � {b})

)
ι2(a)◦ι2(b)−−−−−−→P

(
ι1(S1) � ι2(S2)

) ∼=−→P(S1 S2),

where ι1, ι2 are the coprojections for the coproduct
(
S1 � {a}

) (
S2 � {b}

)
, the first

isomorphism is induced by the isomorphisms

S1 � {a}
∼=−→ ι1

(
S1 � {(a)}

)
and S2 � {a}

∼=−→ ι2
(
S2 � {(b)}

)
,

using the action (6.1), and the last isomorphism by the isomorphism

ι1(S1) � ι2(S2)
∼=−→ S1 S2
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using (6.1) again. Notice thatP(S1 S2) as well as the map a◦b in (6.6) are defined
only up to functorial canonical isomorphisms.

The composition operations in Definition 6.1 were maps

a◦b :P
(
S1 � {a}

)⊗P
(
S2 � {b}

)→ P(S1 � S2).

It is sometimes convenient to consider an equivalent family of compositions, namely

a◦b :P(D1)⊗P(D2)→P
(
D1 �D2 \ {a, b}

)

with D1 := S1 � {a} and D2 := S2 � {b}. One can easily verify that Definition 6.1
is equivalent to

Definition 6.3 A cyclic operad P is a family

P = {P(S) | S ∈ Cor
}

of dg-vector spaces together with degree 0 morphisms

P(ρ) :P(S)→P(D)

given for any isomorphism ρ : S → D of finite sets, and degree 0 morphisms
(compositions)

a◦b :P(S1)⊗P(S2)→P
(
S1 � S2 \ {a, b}

)

defined for arbitrary disjoint finite sets S1, S2 with elements a ∈ S1, b ∈ S2. These
data are required to satisfy the following axioms.

(i) One has P(1S) = 1P(S) for any finite set S, and P(ρσ) = P(ρ)P(σ ) for
arbitrary composable morphisms ρ, σ in Cor.

(ii) For arbitrary isomorphisms ρ : S1 → T1 and σ : S2 → T2 of finite sets, one
has the equality

P
(
ρ|S1\{a} � σ |S2\{b}

)
a◦b = ρ(a)◦σ(b)

(
P(ρ)⊗P(σ )

)

of maps P(S1)⊗P(S2)→P
(
T1 � T2 \ {ρ(a), σ (b)}

)
.

(iii) Let τ :P(S1)⊗P(S2)→ P(S2)⊗P(S1) be the commutativity constraint
in (3). One requires the equality

a◦b = b◦a τ

of maps P(S1)⊗P(S2)→P
(
S2 � S1 \ {a, b}).
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(iv) For disjoint finite sets S1, S2, S3 and a ∈ S1, b, c ∈ S2, b �= c, d ∈ S3, one has
the equality

a◦b(1⊗ c◦d ) = c◦d ( a◦b⊗1)

of maps P(S1)⊗P(S2)⊗P(S3)→P
(
S1 � S2 � S3 \ {a, b, c, d}

)
.

The categoryCor of finite sets is equivalent to its full skeletal subcategory whose
objects are the sets [n] := {1, . . . , n}, n ≥ 0, with [0] interpreted as the empty set ∅.
It is therefore not surprising that there exists a skeletal version of Definition 6.1 in
which the components of cyclic operads are not indexed by arbitrary finite sets, but
by the finite ordinals [n], n ≥ 1. It can be obtained as follows.

For a non-negative integer n denote P(n) := P
([n]). The definition of the

skeletal versions of the a◦b-operations (6.2) involves, for m,n ≥ 0, 1 ≤ i ≤ m+1,
1 ≤ j ≤ n+ 1, an isomorphism

κ = κij :
([m+ 1] \ {i}) ([n+ 1] \ {j }) ∼=−→ [m+ n] (6.7)

given as follows. For a ∈ [m+ 1] \ {i} put

κ(a) :=
{
a, 1 ≤ a < i,

a + n− 1, i < a ≤ m+ 1,

while for b ∈ [n+ 1] \ {j },

κ(b) :=
{
b − j + i + n, 1 ≤ b < j,

b − j + i − 1, j < b ≤ n+ 1.

With these conventions, define

i◦j :P(m+ 1)⊗P(n+ 1)→P(m+ n), 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1,

as the composition

P(m+ 1)⊗P(n+ 1) =P([m+ 1])⊗P([n+ 1]) i◦j−−−→ (6.8)

P
(
([m+ 1] \ {i}) ([n+ 1] \ {j })) P(κ)−−−→P([m+ n]) =P(m+ n),

where i◦j is the extended operation (6.6) for S1 = [m+1]\{i} and S2 = [n+1]\{j }.
Notice finally that each P(n) bears a natural right action of the symmetric group
Σn = Aut[n].
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Remark 6.4 The idea of the isomorphism κ in (6.7) is to apply the cyclic permu-
tation moving j ∈ [n + 1] to 1 ∈ [n + 1] to the second interval, then remove the
image of j and replace i ∈ [m + 1] by the result. Alternatively, one may imagine
two wheels in the plane with the spikes indexed by the ordinals [m+1] resp. [n+1]
in the cyclic order induced by the anticlockwise orientation of the plane. Join then
the ith spike of the first wheel with the j th spike of the second wheel and relabel
the remaining spikes anticlockwise, starting with the spike of the first wheel labeled
1 if i �= 1, or with the spike of the second wheel immediately after the spike labeled
j if i = 1, as indicated in

[m+1] [n+1]
1

i j
1

2

n + 1
2

m + 1

.

In fact, an arbitrary choice of isomorphism in (6.7) would do, but the resulting
“skeletal” axioms of cyclic operads will be different.

Let us finally formulate a skeletal version of the definition of cyclic operads. We
will write it in terms of elements which is in this case more convenient.

Definition 6.4 A cyclic operad P is a family

P = {P(n) | n ≥ 0
}

of dg-vector spaces together with linear left actions

Σn ×P(n)→P(n), n ≥ 1, (6.9)

of the symmetric groups Σn, and degree 0 morphisms (‘ i◦j -operations’)

i◦j :P(m+ 1)⊗P(n+ 1)→P(m+ n),

defined for arbitrary m,n ≥ 0, 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1. These data are
required to satisfy the following axioms.

(i) For x ∈ P(m+ 1), y ∈ P(n + 1), 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n + 1, and for
permutations ρ ∈ Σn+1, σ ∈ Σm+1,

(ρx) ρ(i)◦σ(j)(σy) = λ(x i◦j y),
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where λ ∈ Σm+n is the composition

[m+ n] κ−1
ij−→ ([m+ 1] \ {i}) ([n+ 1] \ {j }) ρ σ−−−→
([m+ 1] \ {ρ(i)}) ([n+ 1] \ {σ(j)}) κρ(i)σ (j)−−−−→ [m+ n]

that involves the maps (6.7).
(ii) For x ∈P(m+ 1), y ∈P(n+ 1), 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1,

x i◦j y = (−1)|x||y|λ(y j◦i x),

where λ ∈ Σn+m is the cyclic permutation that takes j − i +m+ 1 to 1.

(iii) For x ∈ P(n1 + 1), y ∈ P(n2 + 1), x ∈ P(n3 + 1), 1 ≤ i ≤ n1 + 1,
1 ≤ k ≤ n2 + 1, 1 ≤ l ≤ n3 + 1, 1 ≤ j ≤ n2 + n3,

x i◦j (y k◦l z)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x i◦j y) k+i−j−1◦l z, j < k,

(−1)|x||y|λ·y k◦l (x i◦l+j−k+1 z), k ≤ j < k + n3 − l + 1,

(−1)|x||y|λ·y k◦i−j+k+n3−1(x i◦l+j−k−n3 z), k + n3 − l + 1 ≤ j < k + n3,

(x i◦j−n3+1 y) k◦l z, k + n3 ≤ j ≤ n2 + n3,

where λ is the cyclic permutation of [n1 + n2 + n3 − 1] taking j + n1 − i + 1
to 1.

Remark 6.5 Let P = {
P(n) | n ≥ 0

}
be the skeletal presentation of a cyclic

operad with the structure operations i◦j as in Definition 6.4 above. Denote by Q ={
Q(n) | n ≥ 0

}
the collection with Q(n) :=P(n+ 1). Then

◦i : Q(m)⊗Q(n)→ Q(m+ n− 1), m, n ≥ 0,

defined, for 1 ≤ i ≤ m, by

x ◦i y := x i◦n+1 y, (6.10)

where x ∈ Q(m) = P(m + 1) and y ∈ Q(n) = P(n + 1), are the standard
◦i-operations classically used to define operads, see [7, Definition 1.1] or [12,
Definition II.1.16].

Our definition of cyclic operads is slightly more general that the original one [2]
in that we admit nontrivial P(S) in Definition 6.1 for S the empty or a one-element
set, resp. nontrivial P(n) with n ≤ 1 in Definition 6.4. On the other hand, there
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is an important class of cyclic operads whose components vanish on sets of small
cardinalities:

Definition 6.5 A cyclic operad P as in Definition 6.1 is stable if P(S) = 0 for
all S ∈ Cor with card(S) ≤ 2. In the skeletal setup of Definition 6.4 the stability
means that P(n) = 0 for n ≤ 2.

The above terminology is motivated by the stability property of smooth complex
projective curves of genus zero with n marked points. Such a curve is, by definition,
stable, if it has no infinitesimal automorphism fixing the marked points. It is well-
known that this happens if and only if n ≥ 3. A generalization of this notion to
arbitrary genera is recalled in Example 6.25.

Example 6.1 The cyclic operad Com is defined by

Com(S) :=
{
k if S has at least 3 elements, and

0 if S has less than 3 elements.

The functorial isomorphisms Com(σ ) : Com(S) → Com(D) are the identities and
the compositions

a◦b : Com
(
S1 � {a}

)⊗ Com
(
S2 � {b}

) −→ Com
(
S1 � S2

)

the canonical isomorphisms k ⊗ k ∼= k, k ⊗ 0 ∼= 0, 0 ⊗ k ∼= 0 or 0 ⊗ 0 ∼= 0,
depending on the cardinalities of the sets S1 resp. S2.

For a set S with at least 3 elements denote by μS ∈ Com(S) the element
corresponding to 1 ∈ k = Com(S); for S with less than 3 elements we put μS := 0.
It is clear from definition that

Com(σ )(μS) = μD

for any isomorphism σ : S → D of finite sets and that

μS1�{a} a◦b μS2�{b} = μS1�S2 (6.11)

for arbitrary disjoint finite sets S1 and S2. The operad Com is stable. An example of
a non-stable cyclic operad is provided by the endomorphism operad EndV recalled
in Example 6.6 below.

It should be clear that the cyclic operad Com can equivalently be defined by
Com(S) := Span(μS) for arbitrary finite set S, with the structure operations given
by (6.11). The third kind of definition via the generating operation and a relation
will be given in Proposition 6.4.
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Remark 6.6 Definition 6.1 and the equivalent definitions that follow define cyclic
operads in the symmetric monoidal category Chain of dg-vector spaces and
their degree 0 morphisms. Cyclic operads can however be defined in an arbitrary
symmetric monoidal category, for instance, in the cartesian monoidal category Set
of sets. Such a Set-cyclic operad S is a collection

S = {S (S) ∈ Set | S ∈ Cor
}

of sets together with maps of sets

S (ρ) : S (S)→ S (D)

as in (6.1) and compositions

a◦b : S
(
S1 � {a}

)×S
(
S2 � {b}

)→ S (S1 � S2)

satisfying the obvious analogs of the axioms of Definition 6.1. Stability of such
an operad means that S (S) = ∅ if card(S) ≤ 2. Each Set-cyclic operad S
determines a Chain-operad Span(S ) with

Span(S )(S) := Span
(
S (S)

)
, S ∈ Cor,

where Span
(
S (S)

)
is the linear span of the set S (S). We call Span(S ) the

linearization of the Set-operad S . It is clear that Span(S ) is stable if and only
if S is stable.

Example 6.2 The subcategory of stable cyclic Set-operads has the terminal object
∗cyclic given by

∗cyclic(S) =
{
∗ if card(S) ≥ 3 and

∅ otherwise,

where ∗ is a one-point set. All its structure operations a◦b : ∗ × ∗ → ∗ are the
isomorphisms ∗×∗ ∼= ∗ and the action (6.1) is trivial. It is clear that for each stable
cyclic Set-operad S there exists a unique morphism S → ∗cyclic, which means
that ∗cyclic is indeed a terminal Set-operad. The cyclic operad Com of Example 6.1
is the linearization of this terminal operad, that is,

Com ∼= Span(∗cyclic). (6.12)

Example 6.3 There exists a simple geometric interpretation of the terminal stable
cyclic operad ∗cyclic. For S ∈ Cor, card(S) ≥ 3, denote by M0(S) the set of
isomorphism classes of oriented closed surfaces of genus 0 with holes labeled by
S. An example of such a surface is given in Fig. 6.2-left. For card(S) ≤ 2 put
M0(S) := ∅.
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Fig. 6.2 Left: a surface representing an element in M0
({a, b, c, d}). Right: the gluing a◦b

For a surface S′ with holes labeled by S1�{a}, and a surface S′′ with holes labeled
by S2 � {b}, one has the surface S′ a◦b S′′ obtained by connecting the circumference
of the hole labeled a with the circumference of the hole labeled b using a “tube,” as
in Fig. 6.2-right. This operation induces a map

a◦b : M0
(
S1 � {a}

)×M0
(
S2 � {b}

)→ M0(S1 � S2)

of isomorphism classes which makes M0 = {M0(S)} a cyclic operad. Since, for any
finite set S with more than three elements there is only one isomorphism class in
M0(S), one has M0 ∼= ∗cyclic.

Later, in Sect. 6.3, we define algebras over cyclic operads. To do so, we will
need the endomorphism operad of a dg-vector space with a non-degenerate bilinear
form. This operad is generic in that all axioms of cyclic operads can be read from
its properties. Before we define this operad in Example 6.7, we need to introduce
a concept of multiple tensor products of graded vector spaces indexed by finite
unordered sets.

Let {Vc}c∈S be such a collection of dg-vector spaces indexed by a finite set S.
Since the commutativity constrain (3) is nontrivial, the multiple tensor products of
Vc, c ∈ S, may depend on the order of factors. If, for instance, S = {a, b}, the space
Va ⊗ Vb is not the same as Vb ⊗ Va , only isomorphic to it via the isomorphism (3).
In the presence of a grading this subtlety becomes crucial.

Since S is not a priory ordered, we want a concept that would not depend on a
chosen order. The idea is to choose an order, then perform the usual tensor product,
and identify the products over different orders using the Koszul sign rule. Noticing
that an order of a finite set S with n elements is the same as an isomorphism ω :
{1, . . . , n} ∼=→ S, we are led to the following definition.

Definition 6.6 The unordered tensor product
⊗

c∈S Vc of the collection {Vc}c∈S is
the vector space of equivalence classes of usual tensor products

vω(1) ⊗ · · · ⊗ vω(n) ∈ Vω(1) ⊗ · · · ⊗ Vω(n), ω : {1, . . . , n} ∼=−→ S, (6.13)
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modulo the identifications

vω(1) ⊗ · · · ⊗ vω(n) ∼ ε(σ ) vωσ(1) ⊗ · · · ⊗ vωσ(n), σ ∈ Σn,

where ε(σ ) is the Koszul sign ((1) in Part II) of the permutation σ .

Remark 6.7 The need for a subtler version of the tensor product is caused by the fact
that the category dgVec of dg-vector spaces is a non-strict symmetric monoidal
category. Similar unordered products can be defined in any symmetric monoidal
category with finite colimits, see, e.g., [12, Def. II.1.58].

Let us formulate two important properties of unordered tensor products.

Lemma 6.1 Let σ : S → D be an isomorphism of finite sets, {Vc}c∈S and {Wd }d∈D
collections of graded vector spaces, and ϕ = {ϕc : Vc → Wσc}c∈S a family of linear
maps. Then the assignment

⊗
c∈S

Vc  
[
vω(1) ⊗ · · · ⊗ vω(n)

] 
−→ [
wσω(1) ⊗ · · · ⊗ wσω(n)

] ∈⊗
d∈D

Wd

with wσω(i) := ϕω(i)(vω(i)) ∈ Wσω(i), 1 ≤ i ≤ n, defines a natural map

(σ, ϕ) :
⊗
c∈S

Vc →
⊗
d∈D

Wd

of unordered products

Proof. A direct verification.

A particularly important case of the above lemma is when Vc = Vd = V for all
c ∈ S, d ∈ D, and ϕc : V → V is the identity for all c ∈ S. Lemma 6.1 then gives
a natural map

σ := (σ, ϕ) :
⊗
c∈S

Vc →
⊗
d∈D

Vd. (6.14)

Lemma 6.2 For disjoint finite sets S′, S′′, one has a canonical isomorphism
⊗
c′∈S ′

Vc′ ⊗
⊗
c′′∈S ′′

Vc′′ ∼=
⊗

c∈S ′� S ′′
Vc.
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Proof. Each ω′ : {1, . . . , n} ∼=→ S′ and ω′′ : {1, . . . ,m} ∼=→ S′′ determine an
isomorphism

ω′ � ω′′ : {1, . . . , n +m} ∼=−→ S′ � S′′

by the formula

(ω′ � ω′′)(i) :=
{
ω′(i), if 1 ≤ i ≤ n, and

ω′′(i − n), if n < i ≤ n+m .

The isomorphism of the lemma is then given by the assignment

[vω′(1)⊗· · ·⊗vω′(n)]⊗[vω′′(1)⊗· · ·⊗vω′′(m)] 
→ [v(ω′�ω′′)(1)⊗· · ·⊗v(ω′�ω′′)(n+m)].

Example 6.4 Let S = {c1, . . . , cn}. By iterating Lemma 6.2 one obtains a canonical
isomorphism

⊗
c∈S

Vc ∼= Vc1 ⊗ · · · ⊗ Vcn

which, crucially, depends on the order of elements of S.

Example 6.5 Let ↑ k be the one-dimensional graded vector space concentrated in
degree +1, S = {1, . . . , n} and ↑ ki :=↑ k for each i ∈ S. Then

⊗
i∈S ↑ ki is

the one-dimensional vector space concentrated in degree n. Action (6.14) applied
to isomorphisms σ : {1, . . . , n} → {1, . . . , n}, i.e., to elements of the symmetric
group Σn, is the signum representation.

We are ready to define the endomorphism operad.

Example 6.6 Let V be a graded vector space and s ∈ V ⊗V a symmetric degree
0 tensor. Its symmetry means that τ (s) = s, where τ is the flip (3). For a finite set
S put

EndV (S) := Lin
(⊗

c∈S Vc,k
) = (

⊗
c∈S Vc)#,

where Vc := V for each c ∈ S. Given an isomorphism σ : S → D of finite sets,
define

EndV (σ ) : EndV (S)→ EndV (D)

by EndV (σ )(f ) := f σ−1 for f :⊗c∈S Vc → k ∈ EndV (S) and σ as in (6.14).



6.1 Cyclic Operads 109

Let S1, S2 be disjoint finite sets and a �= b two symbols. For f ∈ EndV
(
S1�{a}

)
and g ∈ EndV

(
S2 � {b}

)
let f a◦b g ∈ EndV

(
S1 � S2

)
be the composition

⊗
c∈S1� S2

Vc
∼=−→
⊗
c′∈S1

Vc′ ⊗
⊗
c′′∈S2

Vc′′
∼=−→
⊗
c′∈S1

Vc′ ⊗ k⊗
⊗
c′′∈S2

Vc′′ (6.15)

1⊗s⊗1−−−→
⊗
c′∈S1

Vc′ ⊗ Va ⊗ Vb ⊗
⊗
c′′∈S2

Vc′′

∼=−→
⊗

c′∈S1�{a}
Vc′ ⊗

⊗
c′′∈S2�{b}

Vc′′
f⊗g−−−→ k

in which the isomorphisms are those of Lemma 6.2 and s is interpreted as the map
k → Va ⊗ Vb that sends 1 ∈ k to s. Alternatively, one may define f a◦b g as the
result of the application of the composition

( ⊗
c′∈S1�{a}

Vc′
)# ⊗

( ⊗
c′′∈S2�{b}

Vc′′
)#

↪→
( ⊗
c′∈S1�{a}

Vc′ ⊗
⊗

c′′∈S2�{b}
Vc′′
)#

(6.16)

∼=−→
( ⊗
c′∈S1

Vc′ ⊗ Va ⊗ Vb ⊗
⊗
c′′∈S2

Vc′′
)# (1⊗s⊗1)#−−−→

( ⊗
c′∈S1

Vc′ ⊗ k⊗
⊗
c′′∈S2

Vc′′
)#

∼=−→
( ⊗
c′∈S1

Vc′ ⊗
⊗
c′′∈S2

Vc′′
)# ∼=−→

( ⊗
c∈S1� S2

Vc

)#

to f ⊗ g ∈ (⊗c′∈S1�{a} Vc′
)# ⊗ (⊗c′′∈S2�{b} Vc′′

)#. In shorthand,

f a◦b g =
(
1V⊗S1 ⊗ s ⊗ 1V⊗S2

)#
(f ⊗ g)

and, denoting 1S1 := 1V⊗S1 and 1S2 := 1V⊗S2 , we can write still more concisely

f a◦b g :=
(
1S1 ⊗ s ⊗ 1S2

)#
(f ⊗ g). (6.17)

Let us verify the associativity (6.5) of the above operations.
For f ∈ (⊗c′∈S1�{a} Vc′

)#
, g ∈ (⊗c′′∈S2�{b,c} Vc′

)# and h ∈ (⊗c′′∈S3�{d} Vc′
)#

one has

f a◦b(g c◦d h) =
(
1S1⊗s̄⊗1S2�S3

)#(1S1�{a,b}�S2⊗¯̄s⊗1S3

)#
(f⊗g⊗h), (6.18)

while

(f a◦b g) c◦d h =
(
1S1�S2 ⊗ ¯̄s ⊗ 1S3

)#(
1S1 ⊗ s̄ ⊗ 1S2�{c,d}�S3

)#
(f ⊗ g ⊗ h).
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In the above display, s̄ and ¯̄s are two copies of the map s. It is simple to verify that
both expressions above in fact equal

(
1S1 ⊗ s̄ ⊗ 1S2 ⊗ ¯̄s ⊗ 1S3

)#
(f ⊗ g ⊗ h)

which establishes (6.5). We shall however keep in mind that calculations using the
shorthand (6.17) implicitly involve several canonical identifications and inclusions.

We leave as an exercise to verify that the collection EndV = {EndV (S) | S ∈
Cor} with the above operations fulfills also the remaining axioms of cyclic operads.
The symmetry of s is necessary for axiom (iii) to hold. It is a generic example of a
cyclic operad in that all the axioms can be read off from it.

Definition 6.7 The operad EndV , or End(V ,s) if we want to stress the rôle of the
symmetric tensor s, is called the cyclic endomorphism operad of the vector space V .

Example 6.7 We are going to describe a dual version of the endomorphism operad
EndV of Example 6.6. This time V is a graded vector space equipped with a degree
0 symmetric, not necessarily non-degenerate bilinear form B : V ⊗V → k. For a
finite set S define

DneV (S) :=⊗c∈S Vc,

where Vc := V for each c ∈ S. Given an isomorphism σ : S → D of finite sets, put

DneV (σ ) := σ : DneV (S)→ DneV (D),

with σ as in (6.14). Let S1, S2 be disjoint finite sets and a �= b two symbols. Define

a◦b : DneV
(
S1 � {a}

)⊗DneV
(
S2 � {b}

)→ DneV
(
S1 � S2

)

as the composition

DneV
(
S1 � {a}

)⊗DneV
(
S2 � {b}

) ∼= DneV
(
S1)⊗ V ⊗ V ⊗DneV

(
S2)

1⊗B⊗1−−−→ DneV
(
S1)⊗DneV

(
S2) ∼= DneV

(
S1 � S2)

in which the isomorphisms are those of Lemma 6.2. In the shorthand similar
to (6.17) we may write

x a◦b y := (1S1 ⊗ B ⊗ 1S2)(x ⊗ y).

We leave again as an exercise to verify that the collection DneV = {DneV (S) | S ∈
Cor} with the above operations is a cyclic operad.
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Let us investigate the relation between the operads EndV and DneV . Assume
that S is a finite set with n elements, V a graded vector space, and Vc := V for each
c ∈ S. We then have the unshuffle isomorphism

ush :
⊗
c∈S

(Vc ⊗ Vc)
∼=−→
⊗
c∈S

Vc ⊗
⊗
c∈S

Vc

defined, for v′1, . . . , v′n, v′′1 , . . . , v′′n ∈ V , by

ush
[
(v′ω(1) ⊗ v′′ω(1))⊗ · · · ⊗ (v′ω(n) ⊗ v′′ω(n))

]
:= (−1)ε · [v′ω(1) ⊗ · · · ⊗ v′ω(n)] ⊗ [v′′ω(1) ⊗ · · · ⊗ v′′ω(n)],

where

ε :=
∑

1≤j<i≤n
|v′ω(i)||v′′ω(j)|.

Each s ∈ V ⊗ V clearly determines an element

s⊗n :=
⊗
c∈S

sc ∈
⊗
c∈S

(Vc ⊗ Vc).

Using this element we define, for each finite set S, a linear map

ΦS : EndV (S)→ DneV (S)

by the formula

ΦS(f ) := (f ⊗ 1)ush(s⊗n) ∈ k⊗
⊗
c∈S

Vc ∼=
⊗
c∈S

Vc = DneV (S), (6.19)

for f :⊗c∈S Vc → k ∈ EndV (S).
Likewise, each bilinear form B : V ⊗ V → k determines a linear map

B⊗n :=
⊗
c∈S

Bc :
⊗
c∈S

(Vc ⊗ Vc)→ k.

We define

ΨS : DneV (S)→ EndV (S)

by the formula

Ψ (v)(w) := B⊗n(ush−1(v ⊗w)
) ∈ k (6.20)
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with v,w ∈⊗c∈S Vc. The symmetry of s resp. of B implies that, if we take (1⊗f )

instead of (f ⊗ 1) in (6.19) resp. w ⊗ v instead of v ⊗ w in (6.20), the resulting
maps will be the same. The following lemma is easy to prove.

Lemma 6.3 The family Φ = {ΦS} is a morphism of operads if and only if

s = (1V ⊗ B ⊗ 1V )(s ⊗ s). (6.21)

Likewise, Ψ = {ΨS} is a morphism of operads if and only if

B = (B ⊗ B)(1V ⊗ s ⊗ 1V ). (6.22)

Remark 6.8 Equations (6.21) resp. (6.22) have simple geometric expressions. If we
depict B : V ⊗V → k as an abstract operation with two inputs and no output,2 i.e.,

B =

and s as an operation with no input and two outputs, i.e.,

s= ,

then (6.21) is expressed as

=

while (6.22) as

=

Recall that B is non-degenerate if, for each x ∈ V , there exists y ∈ V such that
B(x, y) �= 0. It is a standard fact that this condition is equivalent to the existence of
a (necessarily unique) symmetric s ∈ V ⊗ V such that

(1V ⊗ B)(s ⊗ u) = (B ⊗ 1V )(u⊗ s) = u, (6.23)

for each u ∈ V or, in pictures in the spirit of Remark 6.8,

= =

2Since k is the unit of the monoidal category dgVec, it does not count as an output.
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In this situation we write s := B−1 and call s the Casimir element associated with
the non-degenerate bilinear form B. We say that s ∈ V ⊗ V is non-degenerate if
there exists a non-degenerate symmetric bilinear form B such that s = B−1.

As an exercise we recommend to verify that for B resp. s non-degenerate, (6.21)
and (6.22) are automatically satisfied. The pictorial language used above makes this
statement obvious. One easily proves:

Lemma 6.4 The following conditions are equivalent.

(i) The collection ΦS : EndV (S)→ DneV (S) is an isomorphism of operads,
(ii) the collection ΨS : DneV (S)→ EndV (S) is an isomorphism of operads,
(iii) the symmetric bilinear form B : V ⊗ V → k is non-degenerate and s = B−1.

Example 6.8 We are going to describe the skeletal version of the cyclic endo-
morphism operad EndV introduced in Example 6.6. Notice that for S = [n] =
{1, . . . , n}, n ≥ 1, the unordered tensor product

⊗
i∈[n] Vi of Definition 6.6 is

canonically isomorphic to the ordinary tensor product V1 ⊗ · · · ⊗ Vn. In particular,
if Vi = V for each 1 ≤ i ≤ n, then

⊗
i∈[n] Vi is canonically isomorphic to V ⊗n,

therefore

EndV (n) := EndV
([n]) ∼= Lin(V⊗n,k). (6.24)

To shorten the formulas, we will write, for e.g., f ∈ EndV (n), f (v1, . . . , vn)

instead of f (v1 ⊗ · · · ⊗ vn). We will also use a variation of Sweedler’s notation and
write the symmetric element s ∈ V ⊗ V as the formal finite sum s =∑ s′i⊗s′′i .

Under identification (6.24), a permutation σ ∈ Σn acts on a function f ∈
EndV (n), n ≥ 1, by

(σf )(v1, . . . , vn) = ε(σ )f
(
vσ(1), . . . , vσ(n)

)
, v1, . . . , vn ∈ V,

with ε(σ ) the Koszul sign ((1) in Part II). For functions f ∈ EndV (m+1), g ∈
EndV (n+1), 1 ≤ i ≤ m+ 1 and 1 ≤ j ≤ n+ 1, one calculates that

(f i◦j g)(v1, . . . , vm+n) (6.25)

=
∑

ε(−1)κf (v1, ..., vi−1, s
′
i , vi+n, ..., vm+n)

g(vn+i−j+1, ..., vi+n−1, s
′′
i , vi , ..., vn+i−j )

with

κ =|f ||g| + |s′i |(|vi+n| + · · · + |vm+n|)+ |s′′i |(|vn+i−j+1| + · · · + |vi+n−1|)
(6.26)
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and ε = ε(τ ) the Koszul sign of the permutation

τ : v1, . . . , vn 
−→ v1, . . . , vi−1, vi+n, . . . , vm+n,

vn+i−j+1, . . . , vi+n−1, vi , . . . , vn+i−j .

Let us explain how the sign in (6.25) appears. To save the space, we denote, only
for the purpose of this explanation,

V1 := V⊗(i−1), V2 := V ⊗(n−j+1), V3 := V ⊗(j−1), and V4 := V ⊗(m−i+1).

We also denote

ω1 := v1 ⊗ · · · ⊗ vi−1 ∈ V1, ω2 := vi ⊗ · · · ⊗ vn+i−j ∈ V2,

ω3 := vn+i−j+1 ⊗ · · · ⊗ vn+i−1 ∈ V3 and ω4 := vi+n ⊗ · · · ⊗ vm+n ∈ V4.

With this notation, (6.26) reads as

κ = |f ||g| + |s′i ||ω4| + |s′′i ||ω3|.

It follows from the definition of the a◦b-operations in the endomorphism operad
given in Example 6.6 that the skeletal f i◦j g is the composition of the permutation

τ : V1 ⊗ V2 ⊗ V3 ⊗ V4 −→ V1 ⊗ V4 ⊗ V3 ⊗ V2

followed by the isomorphism

V1 ⊗ V4 ⊗ V3 ⊗ V2
∼=−→V1 ⊗ V4 ⊗ k⊗ V3 ⊗ V2 (6.27)

and then by

(1⊗m ⊗ s ⊗ 1⊗n) : V1 ⊗ V4 ⊗ k⊗ V3 ⊗ V2 −→ V1 ⊗ V4 ⊗ V ⊗ V ⊗ V3 ⊗ V2

followed by the permutation

ρ : V1 ⊗ V4 ⊗ V ⊗ V ⊗ V3 ⊗ V2 −→ V1 ⊗ V ⊗ V4 ⊗ V3 ⊗ V ⊗ V2

and, finally, composed with

f ⊗ g : V1 ⊗ V ⊗ V4 ⊗ V3 ⊗ V ⊗ V2 −→ k.

Let us inspect how the composition of the above maps acts on the element

v1 ⊗ · · · ⊗ vn+m = ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4 ∈ V ⊗(m+n).
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While

τ (ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4) = ε(τ ) · (ω1 ⊗ ω4 ⊗ ω3 ⊗ ω2),

isomorphism (6.27) brings ω1 ⊗ ω4 ⊗ ω3 ⊗ ω2 into ω1 ⊗ ω4 ⊗ 1 ⊗ ω3 ⊗ ω2, and

(1⊗m ⊗ s ⊗ 1⊗n)(ω1 ⊗ ω4 ⊗ 1 ⊗ ω3 ⊗ ω2)

=
∑

(ω1 ⊗ ω4 ⊗ s′i ⊗ s′′i ⊗ ω3 ⊗ ω2). (6.28)

The Koszul sign rule gives

∑
ρ(ω1 ⊗ ω4 ⊗ s′i ⊗ s′′i ⊗ ω3 ⊗ ω2)

=
∑

(−1)|s ′i ||ω4|+|s ′′i ||ω3|(ω1 ⊗ s′i ⊗ ω3 ⊗ ω4 ⊗ s′′i ⊗ ω2)

and, finally,

(f ⊗ g)
∑

(ω1 ⊗ s′i ⊗ ω4 ⊗ ω3 ⊗ s′′i ⊗ ω2)

=
∑

(−1)(|ω1|+|s ′i |+|ω4|)|g|f (ω1 ⊗ s′i ⊗ ω4)g(ω3 ⊗ s′′i ⊗ ω2)

=
∑

(−1)|f ||g|f (ω1 ⊗ s′i ⊗ ω4)g(ω3 ⊗ s′′i ⊗ ω2),

where we used that |ω1| + |s′i | + |ω4| + |f | = 0. The accumulated contribution of
the sign factors above is precisely ε(τ )(−1)κ as claimed.

For i = m+ 1 and j = 1 (6.25) acquires a particularly nice form, namely

(f m+1◦1 g)(v1, . . . , vm+n) (6.29)

=
∑

(−1)|f ||g|f (v1, . . . , vm, s
′
i )g(s

′′
i , vm+1, . . . , vm+n).

Example 6.9 Assume that s ∈ V ⊗ V is non-degenerate, i.e., that there exists a
graded symmetric bilinear degree 0 formB : V ⊗V → k satisfying (6.23). Then B,
considered as an element of EndV (2), plays a rôle of a two-sided unit. It is indeed
easy to verify that

f n◦1 B = B 2◦1 f = f

for f ∈ EndV (n).

Example 6.10 The symmetric element s = ∑
s′i ⊗ s′′i ∈ V ⊗ V defines for each

n ≥ 1 a linear map

Lin(V ⊗n+1,k) −→ Lin(V ⊗n, V ), f 
−→ f , (6.30)
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by the formula

f̃ (v1, . . . , vn) :=
∑

(−1)|s ′′i |(|v1|+···+|vn|)s′i · f (v1, . . . , vn, s
′′
i ), v1, . . . , vn ∈ V.

When s is the Casimir element of a non-degenerate bilinear form, the map in (6.30)
is an isomorphism defining another incarnation of the skeletal endomorphism
operad, namely

EndV (n) ∼= Lin(V ⊗n−1, V ), n ≥ 1.

The ◦i-operations in (6.10) are, for 1 ≤ i ≤ m,

φ ∈ EndV (m+1) ∼= Lin(V ⊗m, V ), ψ ∈ EndV (n+1) ∼= Lin(V⊗n, V )

and v1, . . . , vm+n−1 ∈ V , given by the formula

(φ ◦i ψ)(v1, . . . , vm+n−1)

= (−1)κφ
(
v1, . . . , vi−1, ψ(vi , . . . , vi+n−1), vi+n, . . . , vm+n−1

)

with κ = |ψ|(|v1| + · · · + |vi−1|). We recognize the classical form of the ◦i-
operations in the endomorphism operad [9, Example 12] given by inserting ψ into
the ith input of φ.

Example 6.11 Let us describe the skeletal version of the dual cyclic endomorphism
operad DneV introduced in Example 6.7. As in (6.24) we have for each n ≥ 1 the
canonical isomorphism

DneV (n) := DneV
([n]) ∼= V ⊗n,

under which the symmetric group Σn acts by

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n), v1, . . . , vn ∈ V.

For v′1⊗· · ·⊗v′m+1 ∈ DneV (m+1) and v′′1 ⊗· · ·⊗v′′n+1 ∈ DneV (n+1) one obtains

(v′1 ⊗ · · · ⊗ v′m+1) i◦j (v′′1 ⊗ · · · ⊗ v′′n+1)

= εB(v′i , v′′j )v′1 ⊗ · · · ⊗ v′i−1 ⊗ v′′j+1 ⊗ · · · ⊗ v′′n+1 ⊗ v′′1
⊗ · · · ⊗ v′′j−1 ⊗ v′i+1 ⊗ · · · ⊗ v′m+1



6.1 Cyclic Operads 117

with ε the Koszul sign of the permutation

v′1, . . . , v′m+1, v
′′
1 , . . . , v

′′
n+1 
−→

v′i , v′′j , v′1, . . . , v′i−1, v
′′
j+1, . . . , v

′′
n+1, v

′′
1 , . . . , v

′′
j−1, v

′
i+1, . . . , v

′
m+1.

The “classical” ◦i operations (6.10)

◦i : DneV (m+1)⊗DneV (n+1)→ DneV (m+n), 1 ≤ i ≤ m,

are given by

(v′1 ⊗ · · · ⊗ v′m+1) ◦i (v′′1 ⊗ · · · ⊗ v′′n+1)

= εB(v′i , v′′n+1)v
′
1 ⊗ · · · ⊗ v′i−1 ⊗ v′′1 ⊗ · · · ⊗ v′′n ⊗ v′i+1 ⊗ · · · ⊗ v′m,

where ε is the Koszul sign if the permutation

v′1, . . . , v′m+1, v
′′
1 , . . . , v

′′
n+1 
−→ v′i , v′′n+1, v

′
1, . . . , v

′
i−1, v

′′
1 , . . . , v

′′
n, v

′
i+1, . . . , v

′
m.

Let us make the intuitive concept of cyclic operads based on cobwebs presented
at the beginning of this section more precise. The mathematical abstraction of a
cobweb will be a graph. In the traditional approach, a graph consists of vertices and
edges connecting these vertices. In the context of operads, one needs to distinguish
between internal edges (those connecting two vertices) and external ones (legs) with
a “free end” along which graphs can be glued together, see Definition 6.9. This needs
a refinement of the classical definition. We use the one suggested by M. Kontsevich:

Definition 6.8 A graph Γ is a finite set Flag(Γ ) (whose elements are called flags
or half-edges) together with an involution σ and a partition λ.

The vertices Vert(Γ ) of a graph Γ are the blocks of the partition λ. The edges
Edg(Γ ) are pairs of flags forming a two-cycle of σ relative to the decomposition of
a permutation into disjoint cycles. The legs Leg(Γ ) are the fixed points of σ .

We also denote by Leg(v) the flags belonging to the block v or, in common
speech, half-edges adjacent to the vertex v. The cardinality of Leg(v) is the valency
of v. We say that two flags x, y ∈ Flag(Γ ) meet if they belong to the same block of
the partition λ. In plain language, this means that they share a common vertex.

One associates to a graph Γ a finite one-dimensional cell complex |Γ |, obtained
by taking one copy of [0, 1

2 ] for each flag and imposing the following equivalence
relation: The points 0 ∈ [0, 1

2 ] are identified for all flags in a block of the
partition λ and the points 1

2 ∈ [0, 1
2 ] are identified for pairs of flags exchanged

by the involution σ . We call |Γ | the geometric realization of the graph. We will
sometimes make no distinction between the graph in the sense of Definition 6.8 and
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Fig. 6.3 The geometric
realization of the sputnik Σ

a
b

c

d f

e g

h

i

• •

its geometric realization. A tree is a graph T whose geometric realization |T | is
simply connected.3

Example 6.12 (Taken from [3]) Consider the graph Σ with {a, b, . . . , i} as the set
of flags, the involution σ = (df )(eg) and the partition {a, b, c, d, e} ∪ {f, g, h, i}.
Its geometric realization |Σ| is the “sputnik” in Fig. 6.3.

Example 6.13 A S-corolla is the graph �S with one vertex and Leg(�S) = S. Its
geometric realization is indeed the “corolla”

with the spikes indexed by S; whence the name and notation.

Graphs can be glued (grafted) together via their legs. Let Γ1 be a graph with
Leg(Γ1) = S1 � {a} and Γ2 a graph with Leg(Γ2) = S1 � {b}. We define the graph
Γ1 a◦b Γ2 by

Flag(Γ1 a◦b Γ2) := Flag(Γ1) � Flag(Γ2).

The partition of Flag(Γ1 a◦b Γ2) is the union of the partitions of Flag(Γ1) resp.
Flag(Γ2), and the involution σ on Flag(Γ1 a◦b Γ2) agrees with the involution σ1 of
Flag(Γ1) on Flag(Γ1) \ {a}, with the involution σ2 of Flag(Γ2) on Flag(Γ2) \ {b},
and σ(a) := b.

Definition 6.9 We call Γ1 a◦b Γ2 the gluing or grafting of the graphs Γ1 and Γ2.

In human language, Γ1 a◦b Γ2 is obtained by gluing the free end of the leg a to
the free end of b creating a new edge, symbolically:

Γ1 Γ2
a b

3Meaning that |T | has no loops.
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Graphs form a category. Intuitively, a morphism f : Γ0 → Γ1 of graphs is given
by a permutation of vertices, followed by a contraction of some edges of the graph
Γ0, leaving the legs untouched. Translated into the language of Definition 6.8, this
means an injection f ∗ : Flag(Γ1)→ Flag(Γ0) that commutes with the involutions.
Moreover, the involution σ0 of Γ0 must act freely on the complement of the image
of f ∗ in Flag(Γ0) (i.e., the legs of the graphs are preserved by the map f ) and two
flags a and b in Γ1 meet either if f ∗(a) and f ∗(b) meet in Γ0 or there is a chain of
edges in Γ0 from a to b.

A morphism f : Γ0 → Γ1 clearly defines a surjective cellular map |f | : |Γ0| →
|Γ1| of geometric realizations such that the induced map Leg(f ) : Leg(Γ0) →
Leg(Γ1) of legs is bijective. We will denote by Grp the category of graphs and their
morphisms.

Example 6.14 There is a special class of morphisms which are given by contracting
a subset of edges, without permuting the vertices. First of all, for any subset I
of Edg(Γ ), there is a unique graph Γ/I such that Flag(Γ /I) is obtained from
Flag(Γ ) by deleting the flags constituting the edges in I and combining blocks
of the partition that contain flags connected by a chain in I . Then the inclusion
Flag(Γ /I) ↪→ Flag(Γ ) is a morphism of graphs, which we denote by πI : Γ →
Γ/I . An important special case is when I consists of a single edge e. We then
simplify our notation by writing Γ/e instead of Γ/{e} and πe instead of π{e}.

The graph Γ/I introduced in Example 6.14 is called the contraction of Γ along
the set of edges I . Any morphism f : Γ0 → Γ1 of graphs is isomorphic to a
morphism of this form. This means that there exists a subset I ⊂ Edg(Γ0) and
an isomorphism φ : Γ0/I → Γ1 such that the following diagram of graph maps
commutes:

Γ0 Γ1

Γ0/I

πI

f

φ

Example 6.15 The category Grp of graphs has two important full subcategories.
The first one is the category of corollas, easily seen to be isomorphic to the category
Cor introduced at the beginning of this section. Another important subcategory is
the category Tre of trees consisting of graphs with simply connected geometric
realizations. Notice that the only automorphism of a tree T ∈ Tre fixing the legs is
the identity.

Definition 6.10 A cyclic module is a covariant functor E : Cor → Chain. A
morphism Ψ : E → F of cyclic modules is a natural transformation from the
functor E to the functor F .
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Explicitly, a cyclic module is a collection E(S) of dg-vector spaces together
with functorial degree 0 morphisms E(σ) : E(S) → E(T ) specified for any

isomorphism σ : S ∼=−→ T . A morphism Ψ : E → F of cyclic modules is then
a family

Ψ = {ΨS : E(S)→ F(S) | S ∈ Cor}

of degree 0 morphisms of dg-vector spaces such that, for each isomorphism ρ :S →
T of finite sets, the diagram

ΨT

F (ρ)E(ρ)

ΨS

F (T )E(T )

F (S)E(S)

commutes. We denote by CycMod the category of cyclic modules and their
morphisms.

Loosely speaking, a cyclic module is a “cyclic operad without the a◦b-
operations.” We therefore have the forgetful functor

� : CycOp −→ CycMod (6.31)

that forgets the a◦b-operations but remembers the actions of isomorphisms.

Example 6.16 Given a family S of mutually non-isomorphic finite sets together
with a system G = {GS | S ∈ S} of left Aut(S)-modules, there clearly exists a
unique, up to isomorphism, cyclic module EG such that, as left Aut(S)-modules,

EG(S) =
{
GS if S ∈ S, and

0 if S is not isomorphic to a set belonging to S.
(6.32)

Such a cyclic module EG can be constructed as follows. If S is not isomorphic
to an element of S, we put E(S) := 0. In the opposite case, denote by S ∈ S
the unique element of S isomorphic to S, and choose also an isomorphism φS :
S

∼=−→ S. With these choices, we define EG(S) := E(S), S ∈ Cor, with the actions
EG(σ) given as follows. Assume that ρ : S′ → S′′ is an isomorphism. Then of
course S

′ = S
′′

and we define the isomorphism E(ρ) : E(S′) → E(S′′) as the
action of φS ′′ρφ

−1
S ′ ∈ Aut

S
′ = Aut

S
′′ . We call EG the cyclic module generated

by G.
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For a graph Γ and a cyclic module E, let

E(Γ ) :=
⊗

v∈Vert(Γ )
E
(
Leg(v)

)
(6.33)

denote the unordered tensor product over the vertices of Γ . It might help to view
generators of E(Γ ) as structure formulas for chemical substances represented by
decorated graphs, with vertices decorated by specific atoms (elements) and internal
edges of Γ representing chemical bonds.

Notice that each graph isomorphism φ : Γ0
∼=−→ Γ1 induces a natural isomor-

phism

E(φ) : E(Γ0)
∼=−→ E(Γ1)

of dg-vector spaces. For a finite set S define

F(E)(S) :=
⊕

T E(T )

∼ , (6.34)

where the direct sum runs over all trees T with Leg(T ) = S, and the equivalence
relation ∼ identifies x ∈ E(T0) with its image E(φ)(x) ∈ E(T1) for any
isomorphism φ : T0 → T1 such that Leg(φ) = 1S . For any tree T with Leg(T ) = S

one has the canonical map

iT : E(T )→ F(E)(S). (6.35)

Proposition 6.1 The family F(E) = {F(E)(S) | S ∈ Cor} has a natural structure
of a cyclic operad.

Proof. Let ρ : S ∼=−→D be an isomorphism of finite sets and T a tree with Leg(T ) =
S. There clearly exists a tree Tρ obtained by renaming the legs of T according to ρ,

together with an obvious isomorphism φρ : T ∼=−→ Tρ . The collection of induced
isomorphisms

{
E(φρ) : E(T )

∼=−→ E(Tρ) | Leg(T ) = S
}

clearly induces a natural isomorphism of the quotients

F(E)(ρ) : F(E)(S) ∼=−→ F(E)(D).
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To define the a◦b-operations, we recall the gluing of Definition 6.9 and notice
that, by Lemma 6.2, one has for arbitrary trees T1 and T2, the canonical isomor-
phisms

E(T1 a◦b T2) ∼= E(T1)⊗ (T2)

which induce morphisms (in fact, isomorphisms) of the quotients

a◦b : F(E)
(
S1 � {a}

)⊗ F(E)
(
S2 � {b}

)→ F(E)
(
S1 � S2

)
.

It is simple to prove that the above operations make F(E) a cyclic operad. It is stable
if and only if E(S) = ∅ for each S with less than three elements.

Proposition 6.2 The cyclic operad F(E) is free on the cyclic moduleE, i.e., for any
cyclic operad P and any morphism of cyclic modules f : E → P4 there exists
a unique operad morphism Φ : F(E) → P such that f = Φ ◦ ι, where ι is the
obvious inclusion E ↪→ F(E) of cyclic modules. In diagrams:

E

(E)

ι

f

Φ

Proof. The proof follows a standard scheme, cf. [12, Proposition II.1.92], which we
will not reproduce here.

The operad morphism Φ : F(E) → P of Proposition 6.2 is usually called the
extension of f : E →P . A concise categorical reformulation of Proposition 6.2 is
that the functor

F : CycMod −→ CycOp, E 
−→ F(E)

is a left adjoint of the forgetful functor (6.31) which, by definition [6, p. 38], means
the existence of a natural isomorphism of the morphism spaces

CycMod
(
E,�(P)

) ∼= CycOp
(
F(E),P

)
.

In the following text we will again make no notational distinction between
a cyclic operad P and its underlying cyclic module; it will always be clear what
we mean. Let

Π : F(P)→P (6.36)

4More precisely, f : E → �(P), but the implicit presence of the box is clear from the context.
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be the extension of the identity map 1 : P → P of cyclic modules. For a tree T
with Leg(T ) = S we define the contraction along T as the composition

cT :P(T )
iT−→ F(P)(S)

Π−→P(S) (6.37)

of Π with the canonical map (6.35).
Let us indicate an explicit construction of cT by induction on the number of the

edges of T . If T is a corolla �S,P(�S) =P(S) and we put cT =: 1S . Each tree T
with one edge e = {a, b} equals �S1�{a} a◦b �S2�{b} for some finite sets S1, S2 with
S1 � S2 = S, i.e., T looks as

a b .

By Lemma 6.2, P(T ) ∼= P
(
S1 � {a}

) ⊗ P
(
S2 � {b}

)
, and we define cT as the

structure operation a◦b of (6.2).
Suppose that T has ≥ 3 edges. Choosing one of its edges, say e = {a, b},

one decomposes T = T1 a◦b T2, where both T1 and T2 have less edges than T .
Assume that Leg(T1) = S1 � {a} and Leg(T2) = S2 � {b}. We then define cT as the
composition

cT :P(T ) ∼=P(T1)⊗P(T2)
cT1⊗cT2−−−−→ P

(
S1 � {a}

)⊗P
(
S2 � {b}

)
a◦b−−−→P(S1 � S2) =P(S),

where cT1 ⊗ cT2 has been defined by induction.
It remains to observe that the map cT thus constructed does not depend on the

choice of the edge e. Given two different edges e = {a, b} and f = {c, d}, T looks
as in

T1 T2
a b

T3
c d

for some trees T1, T2, and T3. We therefore have two ways of decomposing T ,

T = T1 a◦b(T2 c◦d T3) and T = (T1 a◦b T2) c◦d T3.

Both cases however lead to the same result. If T1, T2, and T3 are corollas, this
statement is equivalent to axiom (iv) of Definition 6.1. The general case can be
treated by induction.
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Remark 6.9 Notice that the contraction cΓ : P(Γ ) → P(S) need not exist for a
general graph Γ with Leg(Γ ) = S. Consider, for instance, the “tick”

ad

bc
.Γ =

There is no way how to define a map

cΓ :P(Γ ) =P
({a, b, c, d})→ P

({c, d})

using only the structure operations of the cyclic operad P . Operads for which such
contractions exist are the modular operads recalled in Sect. 6.4.

Operads are objects of similar nature as, e.g., algebras or groups. One can
therefore speak about suboperads, ideals, presentations, etc. Let us address these
notions now.

Definition 6.11 A suboperad of P is a cyclic submoduleQ of P closed under the
structure operations of P .

Explicitly this means that we are given, for any finite set S, a sub-dg vector space
Q(S) of P(S) such that P(ρ)

(
Q(S)

) ⊂ Q(D) if ρ as in (6.1) and

Q
(
S1 � {a}

)
a◦b Q

(
S2 � {b}

) ⊂ Q(S1 � S2),

where a◦b are the structure operations of (6.2). A suboperad obviously acquires an
operad structure by restricting the structure operations of P .

Definition 6.12 An ideal in P is a cyclic submodule I of P such that

P
(
S1 � {a}

)
a◦b I

(
S2 � {b}

) ∪I
(
S1 � {a}

)
a◦bP

(
S2 � {b}

) ⊂ I (S1 � S2)

for a◦b as in (6.2).

Each ideal is a suboperad but not vice versa. Important examples of ideals are
(componentwise) kernels of operad morphisms. Given a morphism Φ :P → Q of
cyclic operads, define Ker(Φ) to be the subcollection

Ker(Φ)(S) := Ker
(
ΦS :P(S)→ Q(S)

)
, S ∈ cyclic,

of P . It is simple to verify that Ker(Φ) is an ideal in P .
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The characteristic property of ideals in P is that the operad structure of P
induces an operad structure on the (componentwise) quotient

P/I := {P(S)/I (S) | S ∈ cyclic
}
.

Each operad is in fact a quotient of a free one, as stated in

Proposition 6.3 Each cyclic operad P is isomorphic to the quotient F(E)/I for
some cyclic module E and an idealI in F(E).

Proof. It is clear that the map Π of (6.36) is a (componentwise) epimorphism, thus

P ∼= F(P)/Ker(Π). (6.38)

As ideals, e.g., of algebras, also operadic ideals can be generated by sets of
elements. Given a family S of mutually non-isomorphic finite sets and a system
R of elements rS ∈ P(S), S ∈ S, one defines (R), the ideal generated by R, to be
the smallest ideal (i.e., intersection of all ideals) in P containing R.

Presentation (6.38) is huge, usually much smaller ones are available. As an exam-
ple we describe a small presentation of the operad Com recalled in Example 6.1.
Consider the family S consisting of a single set {1, 2, 3} and take

G{1,2,3} := Span(μ{1,2,3}) ∼= k

with the trivial action of the symmetric groups Σ3 = Aut
({1, 2, 3}). Let Eμ be the

cyclic module generated, in the sense of (6.32), by the generating system G and (R)
be the ideal in F(Eμ) generated by the single element

r{1,2,5,6} := μ{1,2,3} 3◦4 μ{4,5,6} − μ{2,5,3} 3◦4 μ{4,6,1} ∈ F(Eμ)
({1, 2, 5, 6})

graphically expressed as

r{1,2,5,6} =

2 5

61

3 4 −

2 5

61

3
4 .

Proposition 6.4 The cyclic operad Com has the presentation

Com ∼= F(Eμ)/(R). (6.39)
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Proof. It is clear from definitions that F(Eμ)(S) is spanned by trees with trivalent
vertices and legs indexed by S. Modding out by (R) means identifying two such
trees that differ by a finite sequence of the moves

..

Since arbitrary trees generating F(Eμ)(S) can clearly be related by a sequence of
such moves, we see that F(Eμ)/(R)(S) is one-dimensional, with the trivial actions
of the automorphism group. Isomorphism (6.39) is clear now.

Proposition 6.4 can be reformulated by saying that Com is generated by a fully
symmetric element μ{1,2,3} ∈ Com({1, 2, 3}) such that

μ{1,2,3} 3◦3 μ{3,4,5} (6.40)

is cyclically symmetric in 1, 2, 4, 5.5 Equation (6.40) in this setup requires expla-
nation. Given μ{1,2,3} determines the generator μS ∈ Com(S) for an arbitrary S

with three elements. Indeed, choose an isomorphism σ : {1, 2, 3} → S and put
μS := Com(σ )(μ{1,2,3}). The result does not depend on the choice of σ by the
symmetry ofμ{1,2,3}. The elementμ{3,4,5} in (6.40) is the one determined byμ{1,2,3}
in this way.

6.2 Non-Σ Cyclic Operads

Let us mention an important variant of operads, namely non-Σ cyclic6 operads
obtained by taking, in Definition 6.1, instead of the category Cor of finite sets
and their isomorphisms the category Cor of finite cyclically ordered sets and
isomorphisms preserving the cyclic orders.

A non-Σ cyclic operad is thus a collection P = {
P(S) | S ∈ Cor

}
of dg-

vector spaces, but the actions (6.1) are this time defined only for order-preserving
isomorphisms σ : S → D of cyclically ordered sets. In (6.2) we assume that the sets
S1 �{a} res. S2 �{b} are cyclically ordered and that S1 �S2 has the obvious induced
cyclic order. Otherwise, the axioms are formally the same as in Definition 6.1. We
denote by CycOp the category of non-Σ cyclic operads. As expected, a non-Σ
cyclic operad P is stable if P(S) = 0 whenever card(S) ≤ 2.

5Thanks to the symmetry of μ{1,2,3}, (6.40) is actually fully symmetric in 1, 2, 3, 4.
6Instead of “non-Σ” also the prefix non-symmetric is sometimes used in the literature.
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Fig. 6.4 The cyclic order on
the set of half-edges of a
vertex of a planar graph
induced by the anticlockwise
orientation of the plane

2

It is clear that each cyclic operad determines, by restricting to cyclically
ordered sets, a non-Σ cyclic operad. This gives rise to the forgetful functor (the
desymmetrization7)

Des : CycOp −→ CycOp (6.41)

that has a left adjoint (the symmetrization)

Sym : CycOp→ CycOp. (6.42)

We leave as an exercise to describe Sym(P) of a non-Σ cyclic operad explicitly.
A functor E : Cor → Chain will be called a non-Σ cyclic module. We again

have the forgetful functor

� : CycOp −→ CycMod (6.43)

from the category of non-Σ cyclic operads to the category of non-Σ cyclic modules.
For such a moduleE, one has the free non-Σ cyclic operad F(E) given by a formula
similar to (6.34) but involving only planar trees, not arbitrary ones. Let us give

Definition 6.13 A planar graph is a graph Γ as in Definition 6.8 together with an
(isotopy class of an) embedding of its geometric realization |Γ | into the oriented
plane R2.

The embedding |Γ | ↪→ R2 induces for each vertex v of Γ a cyclic order on the
set Leg(v) of half-edges adjacent to v, as indicated in Fig. 6.4. In the same manner
also the set Leg(Γ ) acquires a cyclic order. The converse is true for trees:

Proposition 6.5 An arbitrary choice of cyclic orders of the sets of half-edges
adjacent to the vertices of a tree T is induced by (a unique isotopy class of) an
embedding of |T | into the oriented plane R2. Therefore, a planar structure on a tree
is the same as specifying the cyclic orders of Leg(v) for each vertex v of T .

7Not to be mistaken with Batanin’s desymmetrization of [1].
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Proposition 6.4 is so obvious that we are not going to prove it here. Notice that it
does not hold for general graphs. As an example, consider the graph

with two vertices whose half-edges are cyclically oriented as indicated by the
arrows. This graph cannot be embedded into the plane such that these orientations
are induced by the embedding.

An isomorphism of planar graphs is an isomorphism preserving the prescribed
cyclic orders of the corresponding sets of half-edges. For a planar graph Γ and a
non-Σ cyclic module E define

E(Γ ) :=
⊗

v∈Vert(Γ )
E
(
Leg(v)

)
.

The above formula makes sense since the sets Leg(v) are cyclically ordered by

assumption. As before, an isomorphism φ : Γ0
∼=−→ Γ1 of planar graphs induces

an isomorphism

E(φ) : E(Γ0)
∼=−→ E(Γ1).

For a finite cyclically ordered set S ∈ Cor define

F(E)(S) :=
⊕

T E(T )

∼ ,

where the direct sum this time, unlike in (6.34), runs over planar trees T with
Leg(T ) = S (equality of cyclically ordered sets); the equivalence relation is an
obvious analog of that in (6.34). One has the expected

Proposition 6.6 The family F(E) = {F(E)(S) | S ∈ Cor} is a non-Σ cyclic
operad.

The proof is a verbatim analog of the proof of Proposition 6.2, one only needs to
observe that the gluing T1 a◦b T2 of two planar trees is planar again. One finally has:

Proposition 6.7 The non-Σ cyclic operad F(E) is free on the Cyc-module E.

Example 6.17 For a finite cyclically ordered set S ∈ Cor, put

Ass(S) :=
{
k if S has at least 3 elements, and

0 if S has less than 3 elements.
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The action Ass(σ ) of an order-preserving isomorphisms of cyclically ordered set is
the identity, and the compositions

a◦b : Ass
(
S1 � {a}

)⊗Ass
(
S2 � {b}

) −→ Ass
(
S1 � S2

)

are the canonical isomorphisms. Then Ass with the above structure is a stable non-
Σ cyclic operad.

The definition of the operad Ass looks very much the same as the definition of
Com given in Example 6.1, but one must remember that these operads belong to
different categories. The suboperads, ideals, presentations, and the related notions
for non-Σ cyclic operads can be defined analogously as for ordinary operads; we
leave the details to the reader. The following statement describes a presentation of
the non-Σ cyclic operad Ass.

Proposition 6.8 The non-Σ cyclic operad Ass is generated by an element
μ{1,2,3} ∈ Ass({1, 2, 3}) such that

μ{1,2,3} 3◦3 μ{3,4,5} (6.44)

is cyclically symmetric in 1, 2, 4, 5.

Example 6.18 The symmetrization (6.42) Ass := Sym(Ass) has a nice explicit
description. For a set with n ≥ 3 elements one has

Ass(S) = Span
( ω : {1, . . . , n} ∼=−→ S

∼
)
,

the vector space spanned by the set of isomorphisms ω between {1, . . . , n} and S,
modulo the relation ∼ that identifies, for each cyclic permutation λ ∈ Σn, the
isomorphism ω with ωλ.

It is convenient to denote the equivalence class of [ω] by (c1, . . . , cn), with ci :=
ω(i), 1 ≤ i ≤ n. By the definition of the equivalence, one has the equality

(c′1, . . . , c′n) = (c′′1 , . . . , c′′n) (6.45)

if and only if c′i = c′′λ(i) for some cyclic permutation λ ∈ Σn, 1 ≤ i ≤ n.
In this language, the action (6.1) is given by

Ass(σ )(c1, . . . , cn) = (σc1, . . . , σcn).



130 6 Operads

Let us describe the compositions (6.2). Thanks to equality (6.45), every element of
Ass

(
S1 � {a}

)
can be (uniquely) represented as (c′1, . . . , c′n, a) and, likewise, each

element of Ass
(
S2 � {b}

)
can be represented as (b, c′′1, . . . , c′′m). We then have

(c′1, . . . , c′n, a) a◦b(b, c′′1, . . . , c′′m) := (c′1, . . . , c′n, c′′1 , . . . , c′′m).

Example 6.19 The category of stable non-Σ-cyclic operads in the category Set of
sets has the terminal object ∗cyclic given by

∗cyclic(S) :=
{
∗ if card(S) ≥ 3 and

∅ otherwise,

where ∗ is a one-point set, with all structure operations the isomorphisms ∗×∗ ∼=−→∗.
The non-Σ cyclic operad Ass of Example 6.17 is the linearization of this operad,

Ass ∼= Span(∗cyclic).

Example 6.20 As the terminal stable cyclic operad ∗cyclic of Example 6.2 has an
interpretation in terms of oriented genus zero surfaces with holes, the operad ∗cyclic
is isomorphic with the operad W0 whose components W0(S) for card(S) ≥ 3,
consist of isomorphism classes of planar cogwheels

whose teeth are indexed by the cyclically ordered set S, with the cyclic order
agreeing with the one induced by the anti-clockwise orientation of the plane. If
card(S) ≤ 2 we put W0(S) := ∅.

The structure operations are induced by gluing these cogwheels together along
the tips of their teeth so that the orientation is preserved:
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Another presentation of elements of W0, closer to the open string philosophy, is via
oriented spheres with one toothed hole:

whose teeth are indexed by S so that its cyclic order agrees with the one induced by
the orientation of the sphere.

6.3 Operad Algebras

The importance of operads is that they describe, via their representations, algebras
of specific types.

Definition 6.14 Let V be a graded vector space and s ∈ V ⊗ V a symmetric
degree 0 element. An algebra over a cyclic operad P , or a P-algebra, is a
morphism α :P → End(V ,s).

Example 6.21 An algebra over the operad Com from Example 6.1 is the same as
a fully symmetric degree 0 linear map f : V ⊗3 → k such that the linear map
V⊗4 → k

∑
f
(
v1, v2, s

′
i

)
f
(
s′′i , v3, v4

)
(6.46)

is cyclically symmetric in v1, v2, v3, and v4.8 Let us verify this statement.
A Com-algebra is a morphism α : Com → End(V ,s). By Proposition 6.11, such

a morphism is determined by f := α(μ{1,2,3}), where μ{1,2,3} satisfies (6.40). Such
an f is fully symmetric by the symmetry of μ{1,2,3}. Since α is an operad morphism,

α(μ{1,2,3} 3◦3 μ{3,4,5}) = α(μ{1,2,3}) 3◦3 α(μ{3,4,5}),

while it is simple to identify, invoking the definition of the composition in the
endomorphism operad, the right-hand side term with expression (6.46). The cyclic
symmetry of (6.40) therefore implies the cyclic symmetry of (6.46). On the other
hand, it is easy to see that each f : V ⊗3 → k with the above properties determines
a unique morphism α : Com→ End(V ,s) such that f := α(μ{1,2,3}).

8As before, we are using a variation on Sweedler’s convention s =∑ s′i⊗s′′i .
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One can also give the following more standard incarnation of Com-algebras.
Define a degree 0 bilinear operation μ : V ⊗ V → V by

μ(a, b) :=
∑

s′if (s′′i , a, b), a, b ∈ V.

If s is non-degenerate and s−1 = B, then the assignment f ↔ μ defines a
one-to-one correspondence between Com-algebra structures f and commutative
associative multiplications μ on V such that

B
(
μ(a, b), c

) = B
(
a,μ(b, c)

)
.

These structures are commutative non-unital versions of Frobenius algebras.

Let us denote by End(V ,s) the endomorphism operad End(V ,s) considered as a
non-Σ cyclic operad, i.e.,

End(V ,s) := �(End(V ,s)),

where � is the forgetful functor of (6.41). By the standard properties of adjunctions,
for any non-Σ cyclic operad P there exists a one-to-one correspondence between
morphism

α : Sym(P)→ End(V ,s)

in the category of cyclic operads, and morphism

α :P → End(V ,s) (6.47)

in the category of non-Σ cyclic operads. Therefore an algebra over the sym-
metrization Sym(P) is the same as a morphism (6.47). The description of Ass =
Sym(Ass)-algebras in the following example thus easily follows from Proposi-
tion 6.8.

Example 6.22 An algebra over the operad Ass from Example 6.18 is the same as
a degree 0 cyclically symmetric linear map f : V ⊗3 → k such that the linear map
V⊗4 → k defined by

∑
f (v1, v2, s

′
i )f (s

′′
i , v3, v4)

is cyclically symmetric, too.
Define as in Example 6.21 μ : V ⊗ V → V by μ(a, b) :=∑ s′if (s′′i , a, b). If s

is non-degenerate and s−1 = B, then the assignment f 
→ μ defines an one-to-one
correspondence between Ass-algebra structures f and associative, not necessarily
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commutative, multiplications μ on V such that

B
(
μ(a, b), c

) = B
(
a,μ(b, c)

)
.

So Ass-algebras in the above sense are non-unital Frobenius algebras with s the
corresponding Casimir element.

6.4 Modular Operads

While cyclic operads were abstractions of structures of blobs and propagators with
simply connected underlying graphs, modular operads have arbitrary graphs as their
pasting schemes. As a result, there is another grading by the genus of the underlying
graph. Let us give a general definition. Let A be an abelian semigroup, i.e., a set
with an associative commutative operation + : A × A → A and a unit 0 ∈ A. A
typical example will be the semigroup N = {0, 1, 2, . . .} of natural numbers. When
convenient, we consider A as a discrete category.

Definition 6.15 A modular module is a covariant functor

E : Cor× A→ Chain.

A morphism Ψ : E → F of modular modules is a natural transformation from the
functor E to the functor F .

Explicitly, a modular module E is a collection E(S; g), S ∈ Cor, g ∈ A, of
dg-vector spaces together with functorial degree 0 morphisms

E(σ) : E(S; g)→ E(T ; g) (6.48)

specified for any isomorphism σ : S ∼=−→ T and g ∈ A. We call g ∈ A the operadic
genus or simply the genus of the componentE(S; g) ofE. A morphismΨ : E → F

of modular modules is then a family

Ψ = {Ψ (S; g) : E(S; g)→ F(S; g) | (S; g) ∈ Cor× A} (6.49)

of degree 0 morphisms of dg-vector spaces such that, for each isomorphism ρ :S →
T of finite sets, the diagram

ΨT

F (ρ)E(ρ)

ΨS

F (T ; g)E(T ; g)

F (S; g)E(S; g)

commutes. We denote by ModMod the category of modular modules.
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Remark 6.10 Later on, we will also need degree-k morphisms of modular modules
for an integer k. It is a family as in (6.49), but this time consisting of morphisms of
degree k. For k = 0 this extended notion of course agrees with Definition 6.15.

Definition 6.16 Let s ∈ A be a chosen element called the step. A modular operad
with step s is a modular module

M = {M (S; g) ∈ Chain | (S; g) ∈ Cor× A
}

(6.50)

together with degree 0 morphisms (compositions)

a◦b :M
(
S1 � {a}; g1

)⊗M
(
S2 � {b}; g2

)→M (S1 � S2; g1 + g2) (6.51)

defined for arbitrary disjoint finite sets S1, S2, symbols a, b, and arbitrary genera
g1, g2 ∈ A. There are, moreover, degree 0 contractions

◦uv = ◦vu :M
(
S � {u, v}; g)→ M (S; g + s) (6.52)

given for any finite set S, genus g ∈ A, and symbols u, v. These data are required to
satisfy the following axioms.

(i) For arbitrary isomorphisms ρ : S1 � {a} → T1 and σ : S2 � {b} → T2 of finite
sets and genera g1, g2 ∈ A, one has the equality

M
(
ρ|S1 � σ |S2

)
a◦b = ρ(a)◦σ(b)

(
M (ρ)⊗M (σ )

)

of maps

M
(
S1 � {a}; g1

)⊗M
(
S2 � {b}; g2

)→M
(
T1 � T2 \ {ρ(a), σ (b)}; g1 + g2

)
.

(ii) For an isomorphism ρ : S � {u, v} → T of finite sets and a genus g ∈ A, one
has the equality

M
(
ρ|S
) ◦uv = ◦ρ(u)ρ(v)M (ρ) (6.53)

of maps M
(
S � {u, v}; g)→M

(
T \ {ρ(u), ρ(v)}; g + s

)
.

(iii) For S1, S2, a, b and g1, g2 as in (6.51), one has the equality

a◦b = b◦a τ (6.54)

of maps M (S1 � {a}; g1)⊗M (S2 � {b}; g2)→M
(
S1 � S2; g1 + g2

)
.9

9Recall that τ is the commutativity constraint in the category of graded vector spaces.
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(iv) For mutually disjoint sets S1, S2, S3, symbols a, b, c, d , and genera
g1, g2, g3 ∈ A, one has the equality

a◦b(1⊗ c◦d) = c◦d( a◦b⊗1) (6.55)

of maps from M
(
S1 � {a}; g1

) ⊗M
(
S2 � {b, c}; g2

) ⊗M
(
S3 � {d}; g3

)
to

the space M
(
S1 � S2 � S3; g1+g2+g3

)
.

(v) For a finite set S, symbols a, b, c, d and a genus g ∈ A one has the equality

◦ab ◦cd = ◦cd ◦ab (6.56)

of maps M
(
S � {a, b, c, d}; g)→M (S; g + 2s).

(vi) For finite sets S1, S2, symbols a, b, c, d , and genera g1, g2 ∈ A, one has the
equality

◦ab c◦d = ◦cd a◦b (6.57)

of maps M
(
S1�{a, c}; g1

)⊗M
(
S2�{b, d}; g2

)→M (S1�S2; g1+g2+s).
(vii) For finite sets S1, S2, symbols a, b, u, v, and genera g1, g2 ∈ A, one has the

equality

a◦b (◦uv ⊗ 1) = ◦uv a◦b (6.58)

of maps M
(
S1�{a, u, v}; g1

)⊗M
(
S2�{b}; g2

)→M (S1�S2; g1+g2+s).

Notice that the u◦v-operations preserve the A-grading, while the contractions ◦uv
raise it by the step s. The existing definitions of modular operads as given, e.g., in [3]
have always assumed that A := N and s = 1. There are several situations where this
assumption is too restrictive.

Consider, for instance, two modular operads M ′ and M ′′ with A := N and
s = 1. There exists an obvious product formula for the u◦v- and ◦uv-operations on
the modular module M :=M ′ ⊗M ′′ with

M (S; g) :=
⊕

g′+g′′=g
M ′(S; g′)⊗M (S; g′′)

using those ofM ′ resp.M ′′, but the contractions thus defined clearly raise the genus
grading by 2. To have a monoidal structure on the category of modular operads we
must thus allow arbitrary steps. The products of operads M ′ and M ′′ with the steps
s′ and s′′, respectively, are then a modular operad with the step s′ + s′′. We will see
later that assuming A = N is also too restrictive.

Example 6.23 In all interesting examples of modular operad one has s �= 0. It
is an easy exercise that then a modular operad for which M (S; g) �= 0 only if
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card(S) = 2 and g = 0 is precisely a graded (non-unital) associative algebra A with
an involution τ : A→ A such that τ (ab) = τ (b)τ (a) for all a, b ∈ A.

In the seminal paper [3] where modular operads were introduced, the following
property of modular operads was always assumed.

Definition 6.17 A modular operad with A = N and s = 1 is stable if

M (S; g) = 0 for card(S) ≤ 2, g = 0 and for card(S) = 0, g = 1. (6.59)

Using the notation

S := {(S, g) | g ≥ 2, or g = 1 and card(S) ≥ 1, or g = 0 and card(S) ≥ 3
}
,

(6.60)

the stability of a modular operad M can be expressed by witting

M = {M (S; g) ∈ Chain | (S, g) ∈ S}.

Example 6.24 As cyclic operads, also modular operads exist in an arbitrary sym-
metric monoidal category, e.g., in the cartesian monoidal category Set of sets. One
has the terminal stable Set-modular operad ∗Mod defined by

∗Mod(S; g) :=
{
∗ if (S, g) ∈ S, and

∅ otherwise,

where ∗ is a chosen one-point set. The terminal stable modular operad ∗Mod has a
geometric interpretation extending the interpretation of the terminal cyclic operad
given in Example 6.3.

Namely, for (S, g) ∈ S consider the set M(S; g) of isomorphism classes of
oriented closed surfaces of genus g with holes indexed by S. It is a stable modular
operad with a◦b as in Example 6.3, while ◦uv is given by attaching a handle as
follows.

Let P be a surface of genus g with holes labeled by S � {u, v}. We let ◦uv(P ) to
denote the surface obtained from P by adding a tube connecting the circumference
of the hole labeled u with the circumference of the hole labeled v. This gives rise to
an operation

◦ab : M
(
S � {u, v}; g)→ M(S; g + 1)

on the set of isomorphism classes. Since there is for (S, g) ∈ S only one
isomorphism class in M(S; g), one sees that M is isomorphic to the terminal stable
modular operad ∗Mod.
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Example 6.25 Property (6.59) is the abstraction of the stability of complex curves.
A stable curve with marked points is a connected complex projective curveP whose
only singularities are ordinary double points (nodal singularities), together with a
“marking” given by an embedding of a set S into the set of smooth points of P . The
stability means that there are no infinitesimal automorphisms of P fixing the marked
and double points. Equivalently, each smooth component of P isomorphic to the
complex projective space CP1 has at least three special points and each smooth
component isomorphic to the torus has at least one special point, where a special
point is either a double point or a marked point.

The dual graphΔ = Δ(P) of a stable curve P is a labeled graph whose vertices
are the components of P , edges are the nodes and its legs are the elements of S.
An edge ey corresponding to a nodal point y joins the vertices corresponding to the
components intersecting at y. The vertex vK corresponding to a branch K is labeled
by the genus of the normalization of K . The construction of Δ(P) from a curve P
is visualized in Fig. 6.5 taken from [12].

Let us denote by M (S; g) the coarse moduli space [5, p. 347] of marked curves
P whose dual graph Δ(P) has genus g. Obviously,

M = {M (S; g) | (S, g) ∈ Cor× N
}

is a modular module in the category of projective varieties. Since there are no stable
curves of genus g if 2(g− 1)+ card(S) ≤ 0, M automatically satisfies the stability
condition (6.59).

For stable curves P1 ∈M (S1 � {a}; g1) and P2 ∈ M (S2 � {b}; g2) we define

P1 a◦b P2 ∈M (S1 � S2; g1 + g2)

to be the curve obtained by the identification of the point a ∈ P1 with b ∈ P2
introducing a nodal singularity. The contraction ◦uv(P ) ∈ M (S; g + 1) of a curve
P ∈ M (S � {u, v}; g) is defined similarly. With these operations, M is a modular
operad in the category of complex projective varieties, with A = N and s = 1.

x0x2x1

Dual graph Δ (P):

•

a4a3a2a1

a5

••••

x2

x1

x0Curve P:

A5

A4
A3

A2

A1

••

••

• •
•

•

•

Fig. 6.5 A stable curve and its dual graph. The curve P on the left has five components, A1, A2,

A3, A4, and A5, and points marked by S = {x0, x1, x2). The dual graph Δ(P ) on the right has five
vertices a1, a2, a3, a4, and a5 corresponding to the components of the curve and three legs labeled
by the marked points
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Informally, cyclic operads are modular operads without the contractions and the
genus grading. One easily sees that the genus 0 part

�M := {M (S; 0) | S ∈ Cor
}

of a modular operad M with the restricted a◦b-operations forms a cyclic operad.
One therefore has the forgetful functor

� : ModOp→ CycOp

from the category ModOp of modular operads with A = N and the step s = 1 to the
category of cyclic operads. It can be proved that it has a left adjoint

Mod : CycOp→ ModOp

introduced in [8]. The functor Mod(−) preserves the stability.

Definition 6.18 The modular operad Mod(P) is the modular completion or the
modular envelope of the cyclic operad P .

Example 6.26 The terminal stable modular Set-operad ∗Mod discussed in Exam-
ple 6.24 is the modular completion of the terminal stable cyclic operad ∗cyclic from
Example 6.2, i.e., one has the isomorphism

∗Mod ∼= Mod(∗cyclic)

of modular Set-operads (with A = N and s = 1). Equivalently, the stable modular
operad M of oriented surfaces of arbitrary genus is the modular completion of the
stable cyclic operad M0 of oriented surfaces of genus 0. The modular completion
has in this case a clear geometric meaning.

Recall that Com ∼= Span(∗cyclic) by (6.12). We conclude that the modular
completion Mod(Com) of the cyclic Chain-operad Com is the linearization of the
terminal modular set-operad ∗Mod. Explicitly,

Mod(Com)(S; g) =
{
k if (S, g) ∈ S, and

0 otherwise,

with all structure operations the canonical isomorphisms. The operad Mod(Com)
will play the fundamental rôle in our description of the algebraic structure of closed
field theory given in Sect. 8.2 where it will be denoted QC and called the quantum-
closed operad.

Example 6.27 In this example we discuss the stable modular operad QO consisting
of homeomorphism classes of connected compact two-dimensional orientable
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surfaces with labeled marked points on the boundary. Stability means that we
exclude surfaces of genus 0 with either one boundary component and less that three
marked points, or two boundary components and no marked point. We also assume
that all surfaces have at least one boundary component.

To define the operadic composition, it is convenient to replace each marked point
by an interval embedded in the boundary and then glue one edge of a short strip to
the interval. The edge of the strip opposite to the one glued to the interval is called
an open end (of an open string). The surface(s) can be glued along the open ends
where we allow only gluing resulting in orientable surfaces.

It is clear that the homeomorphism class of such a surface is determined by its
genus, by the number of boundary components, and by the cyclically ordered sets of
open ends at each boundary component. The modular operad QO therefore admits
a purely combinatorial description given in the rest of this example. We will need
the following notion.

Definition 6.19 A cycle in a set S is an equivalence class ((x1, . . . , xn)) of an n-tuple
(x1, . . . , xn) of several distinct elements of S under the equivalence

(x1, . . . , xn) ∼ τ (x1, . . . , xn),

where τ ∈ Σn is the cyclic permutation given by τ (i) := i + 1 for 1 ≤ i ≤ n − 1,
and τ (n) := 1. In other words,

((x1, . . . , xn)) = · · · = ((xn−i+1, . . . , xn, x1, . . . , xn−i )) = · · · = ((x2, . . . , xn, x1)) .

We call n the length of the cycle.

We also admit the empty cycle (()), which is a cycle in any set. For a bijection

ρ : S ∼=−→ T and a cycle ((x1, . . . , xn)) in S, define an induced cycle in T by

ρ ((x1, . . . , xn)) := ((ρ(x1), . . . , ρ(xn))) .

We are going to introduce a stable modular operad

QO = {QO(S;G) ∈ Set | (S,G) ∈ S
}

in the category of sets which will be the combinatorial model of the stable part of
the operad QO .10 Since the operadic genus of elements of QO does not coincide
with the geometric genus of the surface it represents, we denoted it in this particular
example by the capital G instead of g that we used for the operadic genus before.

10The set S of stable pairs was defined in (6.60).
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The component QO(S;G) is defined as

QO(S;G) :=
{
{c1, . . . , cb}g | b > 0, g ≥ 0,

b⊔
i=1

ci = S, G = 2g + b − 1
}
,

where {c1, . . . , cb}G is a symbol consisting of a non-negative integer g ≥ 0 and
an (unordered) set of cycles whose disjoint union is S. The natural number g is
the geometric genus of the surface represented by a given symbol. For a bijection

ρ : S ∼=−→ T , let

QO(ρ)({c1, . . . , cb}g) := {ρ(c1), . . . , ρ(cb)}g.

Next, we define the composition operations

a◦b : QO
(
S1 � {a},G1

)⊗QO
(
S2 � {b},G2

)→ QO
(
S1 � S2,G1 +G2

)
.

Assume that ci = ((a, x1, . . . , xm)) is a cycle in S1�{a} and let dj = ((b, y1, . . . , yn))

be a cycle in S2 � {b}. Then

{
c1, . . . , cb1}g1

a◦b
{
d1, . . . ,db2

}g2

:= { ((x1, . . . , xm, y1, . . . , yn)) , c1, . . . , ĉi , . . . , cb1,d1, . . . , d̂j , . . . ,db2

}g1+g2 .

The contractions

◦uv = ◦vu : QO
(
S � {u, v};G)→ QO(S;G+ 1)

are defined as follows. Let {c1, . . . , cb}g ∈ QO(S,G). If there are i < j such that
ci = ((u, x1, . . . , xm)) and cj = ((v, y1, . . . , yn)), then define

◦uv({c1, . . . , cb}g) := {((x1, . . . , xm, y1, . . . , ym)) , c1, . . . , ĉi , . . . , ĉj , . . . , cb}g+1.

Otherwise, there is i such that ci = ((u, x1, . . . , xm, v, y1, . . . , yn)). Then define

◦uv({c1, . . . , cb}g) := {((x1, . . . , xm)) , ((y1, . . . , yn)) , c1, . . . , ĉi , . . . , cb}g.

Notice that we allow repeated empty cycles to appear in {c1, . . . , cb}g, for
example, {(()) , (()) , ((3)) , ((14)) , ((25))}2 ∈ QO([5], 8). Also notice that ◦uv can
produce empty cycles, e.g.,

◦uv{((u)) , ((v))}g = {(())}g+1 and ◦uv {((uv))}g = {(()) , (())}g.
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Observe that

card(QO(S,G)) <∞

for any (S,G) ∈ S. The reader can easily verify that:

Theorem 6.1 QO is a stable modular operad in the category of sets.

As shown in [10], QO is the modular completion of the non-Σ cyclic operadAss
from Example 6.17 in a certain category of non-Σ modular operads. The relation
between QO and Ass is therefore similar as the relation between QC and Com
described in Example 6.26.

Example 6.28 Let V be a graded vector space and s ∈ V⊗V a symmetric degree 0
tensor. We are going to define a modular extension of the cyclic endomorphism
operad from Example 6.6. For a finite set S and g ∈ A we put

EndV (S; g) := Lin
(⊗

c∈S Vc,k
) = (⊗c∈S Vc

)# (6.61)

so EndV (S; g) equals the component EndV (S) of the cyclic endomorphism operad
for each g ∈ A. The action of isomorphisms of finite sets and also the a◦b-operations
are defined precisely as in Example 6.6. The contraction ◦uvf ∈ EndV (S; g+ s) of
f ∈ EndV

(
S � {u, v}; g) is the composition

⊗
c∈S

Vc ∼= k⊗
⊗
c∈S

Vc
s⊗1−−−→ Vu⊗Vv⊗

⊗
c∈S

Vc
∼=−→

⊗
c∈S�{u,v}

Vc
f−→ k, (6.62)

where s is interpreted as a degree 0 map k → Vu ⊗ Vv . It follows from the
commutativity of the diagram

⊗ s

∼=

∼=

s ⊗

∼=

∼=

c∈S Vc ⊗ c∈S Vc ⊗ Vu ⊗ Vv

c∈S u,v} Vc

Vu ⊗ Vv ⊗ c∈S Vc⊗ c∈S Vc

c∈S Vc

(6.63)
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that we could replace s ⊗ 1 in (6.62) by 1 ⊗ s with the same result. Equivalently,
one may define ◦uvf as the result of the application

( ⊗
c∈S�{u,v}

Vc

)# ∼=−→
(
Vu ⊗ Vv ⊗

⊗
c∈S

Vc

)# (s⊗1)#−−−→
(
k⊗

⊗
c∈S

Vc

)# ∼=
(⊗
c∈S

Vc

)#

(6.64)

to f ∈ (⊗c∈S�{u,v} Vc
)#

. In shorthand, ◦uvf := (s ⊗ 1S)#(f ). It is not difficult to
prove that the modular module

EndV = {EndV (S; g)| (S; g) ∈ Cor× A
}

is a modular operad.11 The modular version of the operad DneV of Example 6.7 can
be constructed similarly. Neither EndV or DneV are stable.

As expected, modular endomorphisms operads are used to define algebras over
modular operads:

Definition 6.20 Let V be a graded vector space and s ∈ V⊗V a symmetric degree 0
tensor. An algebra over a modular operad M , or an M -algebra, is a morphism
α :M → EndV of modular operads.

It follows from the universal property defining the modular completion of a cyclic
operad that the category of algebras over a cyclic operad P is isomorphic to the
category of algebras over its modular completion Mod(P).

Forgetting the structure operations a◦b and ◦uv of modular operads induces the
functor

� : ModOp→ ModMod

from the category of modular operads to the category of modular modules. It has a
left adjoint

F : ModMod→ ModOp.

The operad F(E) is the free modular operad generated by the modular module E.
It is characterized by the existence of a natural isomorphism of morphism spaces

ModMod
(
E,�(M )

) ∼= ModOp
(
F(E),M

)

11So we denote both the cyclic endomorphism operad and its modular version by the same symbol.
The meaning will however always be clear from the context.
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which can easily be converted into a diagram analogous to the one in Proposi-
tion 6.2.

Free modular operads admit a description parallel to free cyclic operads given in
Sect. 6.1. Let us firstly introduce some necessary notions.

Definition 6.21 A labeled graph is a couple Γ = (Γ, �) consisting of a graph Γ as
in Definition 6.8 and a labeling � : Vert(Γ )→ A. The genus g(Γ ) ∈ A of a labeled
graph is defined by the formula

g(Γ ) := s · b1(Γ )+
∑

v∈Vert(Γ )
�(v),

where b1(Γ ) is the first Betti number of the geometric realization of Γ , i.e., the
number of independent circuits of Γ .

An isomorphism of φφ : (Γ0, �0)→ (Γ1, �1) of labeled graphs is an isomorphism

φ : Γ0
∼=−→ Γ1 of the underlying graphs compatible with the labelings. The grafting

extends to labeled graphs in the straightforward manner, namely

Γ 1 a◦b Γ 2 = (Γ1 a◦b Γ2; �1 a◦b �2), (6.65)

where Γ1 a◦b Γ2 is as in Definition 6.9 and

(�1 a◦b �2)|Vert(Γi) := �i for i = 1, 2.

One clearly has

g(Γ 1 a◦b Γ 2) = g(Γ 1)+ g(Γ 2).

Suppose that Γ = (Γ, �) is a labeled graph with Leg(Γ ) = S � {u, v}. We define
the contracted labeled graph ◦uvΓ = (◦uvΓ, ◦uv�) as follows. The graph ◦uvΓ has
the same set of flags and its partition as Γ , in particular, Vert(◦uvΓ ) = Vert(Γ ). The
involution ◦uv(σ ) of Flag(◦uvΓ ) agrees with the involution of Γ on Flag(Γ )\{u, v}
while ◦uv(σ )(u) = v. Informally, ◦uvΓ is obtained from Γ by connecting the free
ends of the legs u and v, creating a loop, as expressed in the schematic picture

Γ

u

v
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The labeling ◦uv� is given as the composition Vert(◦uvΓ ) = Vert(Γ )
�→ N. Notice

that

g(◦uvΓ ) = g(Γ )+ s.

Definition 6.22 We call the labeled graph ◦uvΓ the contraction of Γ .

For a labeled graph Γ and a modular module E we consider an analog

E(Γ ) :=
⊗

v∈Vert(Γ )
E
(
Leg(v); �(v)) (6.66)

of the vector space (6.33). Each graph isomorphism φφ : Γ 0
∼=−→ Γ 1 of labeled

graphs clearly induces an isomorphism

E(φ) : E(Γ 0)
∼=−→ E(Γ 1)

of the spaces (6.66). Mimicking (6.34), we define for a finite set S and a genus g ∈ A

F(E)(S; g) :=
⊕

G E(Γ )

∼ (6.67)

with the sum taken over all labeled graphs Γ = (Γ, �) having Leg(Γ ) = S and
g(Γ ) = g. The relation ∼ identifies x ∈ E(Γ 0) with its image E(φφ)(x) ∈ E(Γ 1)

for any isomorphism φφ : Γ 0 → Γ 1 of labeled graphs that induces the identity map
of the set of the legs.

Proposition 6.9 The modular module F(E) = {F(E)(S; g) | S ∈ Cor, g ∈ A
}
is

a modular operad.

Proof. The actions (6.48) and compositions (6.51) are defined as in the proof of
Proposition 6.1; we leave the details for the reader. To define the ◦uv-operations,
we recall the contraction of Definition 6.22 and notice the canonical isomorphism
E(Γ ) ∼= E(◦uvΓ ) which induces isomorphisms of the quotients

◦uv : F(E)
(
S � {u, v}; g) ∼= F(E)

(
S; g + s).

The axioms of modular operads are easy to verify.

It is simple to see that, if A = N and s = 1, the modular operad F(E) is
stable if and only if E(S; g) �= 0 implies (S, g) ∈ S. The following analog of
Proposition 6.2 holds.
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Proposition 6.10 The modular operad F(E) is the free modular operad on the
modular module E.

We finish this section by translating Definition 6.16 of modular operads into the
skeletal language. Recall that [n] := {1, . . . , n}, with [0] the empty set ∅. For M as
in (6.50), n ≥ 0 and g ∈ A denote M (n; g) :=M ([n]; g). The operations

i◦j :M (m+ 1; g1)⊗M (n+ 1; g2)→ M (m+ n; g1 + g2)

are, for 1 ≤ i ≤ m+1, 1 ≤ j ≤ n+1 and g1, g2 ∈ A, given by the obvious analog
of formula (6.8). To define the skeletal version

◦ij :M (n+ 2; g + s)→M (n; g), 1 ≤ i, j ≤ n+ 2, g ∈ A, (6.68)

of the contractions ◦uv in (6.52), we need an auxiliary map

τ = τij : [n+ 2] \ {i, j } → [n] (6.69)

given by

τij (a) :=

⎧⎪⎪⎨
⎪⎪⎩
a, for 1 ≤ a < i,

a − 1, for i < a < j, and

a − 2, for j < a ≤ n+ 2,

if i < j , while for i > j we set τij := τji . Then ◦ij in (6.68) is the composition

M (n+ 2; g + s)
◦ij−→M

([n+ 2] \ {i, j }; g) M (τ ij)−−−→M (n; g), (6.70)

where ◦ij is the contraction (6.52) with S = [n+2]. An involved but straightforward
calculation shows that the above structure has the properties listed in the following

Definition 6.23 A modular operad M is a family

M = {M (n; g) | n ≥ 0, g ∈ A}

of dg-vector spaces together with linear left actions

Σn ×M (n; g)→M (n; g), n ≥ 1, g ∈ A,

of the symmetric groups Σn, degree 0 morphisms

i◦j :M (m+ 1; g1)⊗M (n+ 1; g2)→M (m+ n; g1 + g2),
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defined for m,n ≥ 0, 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, g1, g2 ∈ A, and degree 0
morphisms (the contractions)

◦ij = ◦ji :M (n+ 2; g + s)→M (n; g)

defined for n ≥ 0, 1 ≤ i �= j ≤ n and g ∈ A. These data are required to satisfy
the obvious modular versions of axioms (i)–(iii) of Definition 6.4 involving the i◦j -
operations, plus the following ones.

(i) For each n ≥ 0, g ∈ A, x ∈ M (n+ 2; g) and a permutation ρ ∈ Σn+2,

◦ρ(i)ρ(j)(ρx) = λ◦ij (x),

where λ ∈ Σn is the composition

[n] τ−1
ij−→ [n+ 2] \ {i, j } ρ−→ [n+ 2] \ {ρ(i), ρ(j)}

τρ(i)ρ(j)−−−→ [n].

(ii) For m ≥ 0, g ∈ A, x ∈ M (m+ 4; g), 1 ≤ c < d ≤ m+ 4 and 1 ≤ a < b ≤
m+ 2,

◦ab◦cd(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

◦c−2,d−2◦ab(x), if b < c,

◦c−1,d−2◦a,b+1(x), if a < c ≤ b < d − 1,

◦c−1,d−1◦a,b+2(x), if a < c, d − 1 ≤ b,

◦c,d−2◦a+1,b+1(x), if c ≤ a < b < d − 1,

◦c,d−1◦a+1,b+2(x), if c ≤ a < d − 1 ≤ b, and

◦c,d◦a+2,b+2(x), if d − 1 ≤ a.

(iii) Form,n ≥ 0, g1, g2 ∈ A, x ∈M (m+2; g1), y ∈ M (n+2; g2), 1 ≤ a ≤ c−1
and c ≤ b ≤ c + n,

◦ab(x c◦d y)

=
{
◦c+n,a−b+c+n(x a◦b+d−c+1 y), if c ≤ b < c − d + n+ 2, and

◦c+n,a−b+c+n(x a◦b+d−c−n−1 y), if c − d + n+ 2 ≤ b ≤ c + n.

If c + n+ 1 ≤ a ≤ m+ n+ 2 and x, y, b are as above, then

◦ab(x c◦d y)

=
{
◦c,a−b+c(x a−n◦b+d−c+1 y), if c ≤ b < c − d + n+ 2, and

◦c,a−b+c(x a−n◦b+d−c−n−1 y), if c − d + n+ 2 ≤ b ≤ c + n.
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(iv) For m,n ≥ 0, g1, g2 ∈ A, x ∈ M (m+ 3; g1), x ∈M (n+ 1; g2),

◦ab(x c◦d y)

=

⎧⎪⎪⎨
⎪⎪⎩
◦ab(x) c−2◦d y, if 1 ≤ a < b < c,

◦a,b−n+1(x) c−1◦d y, if 1 ≤ a < c, c + n ≤ b ≤ m+ n+ 2,

◦a−n+1,b−n+1(x) c◦d y, if c + n ≤ a < b ≤ m+ n+ 2.

Denoting

Ssk :=
{
(n, g) | g = 0 and n ≥ 3, or g = 1 and n ≥ 1, or g ≥ 2

}
, (6.71)

one sees that a modular operad M is stable if and only if M (n; g) �= 0 implies
(n, g) ∈ Ssk.

Example 6.29 Extending the calculations of Example 6.8, one can easily describe
the skeletal version of the modular endomorphism operad EndV . One has

EndV (n; g) := EndV
([n]; g) ∼= Lin(V ⊗n,k), n ≥ 0, g ∈ A, (6.72)

with the skeletal operations i◦j given by (6.25). For

f ∈ EndV (n+ 2; g + 1) ∼= Lin(V⊗n+2,k),

1 ≤ i < j ≤ n+ 2 and homogeneous v1, . . . , vn ∈ V , one obtains

◦ij f (v1, . . . , vn) =
∑

(−1)κf (v1, . . . , vi−1, s
′
i , vi , . . . , vj−2, s

′′
i , vj−1, . . . , vn)

(6.73)

with

κ = |s′′i |(|vi | + · · · + |vj−2|). (6.74)

Let us explain the sign. Denote

ω1 := v1 ⊗ · · · ⊗ vi−1 ∈ V1 := V ⊗(i−1),

ω2 := vi ⊗ · · · ⊗ vj−2 ∈ V2 := V⊗(j−i−1)

and ω3 := vj−1 ⊗ · · · ⊗ vn ∈ V3 := V ⊗(n−j+2).

The skeletal ◦ij f is the composition of the canonical isomorphism

V1 ⊗ V2 ⊗ V3
∼=−→ k⊗ V1 ⊗ V2 ⊗ V3 (6.75)
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followed by

(s ⊗ 1) : k⊗ V1 ⊗ V2 ⊗ V3 → Vu ⊗ Vv ⊗ V1 ⊗ V2 ⊗ V3

composed with the permutation

ρ : Vu ⊗ Vv ⊗ V1 ⊗ V2 ⊗ V3
∼=−→V1 ⊗ Vu ⊗ V2 ⊗ Vv ⊗ V3

and finally followed by

f : V1 ⊗ Vu ⊗ V2 ⊗ Vv ⊗ V3 −→ k.

Let us apply this composition on the element

v1 ⊗ · · · ⊗ vn = ω1 ⊗ ω2 ⊗ ω3 ∈ V⊗(n).

Isomorphism (6.75) brings ω1 ⊗ ω2 ⊗ ω3 into 1 ⊗ ω1 ⊗ ω2 ⊗ ω3. One then has

(s ⊗ 1)(1 ⊗ ω1 ⊗ ω2 ⊗ ω3) =
∑

s′i ⊗ s′′i ⊗ ω1 ⊗ ω2 ⊗ ω3,

while

ρ(s′i ⊗ s′′i ⊗ ω1 ⊗ ω2 ⊗ ω3) = (−1)|s ′i ||ω2|ω1 ⊗ s′i ⊗ ω2 ⊗ s′′i ⊗ ω3, (6.76)

so the result is
∑
(−1)|s ′′i ||ω2|f (ω1 ⊗ s′i ⊗ ω2 ⊗ s′′i ⊗ ω3) as claimed.

6.5 OddModular Operads

One of our fundamental constructions used in this work is the Feynman transform
of a modular operads recalled below in Sect. 7.2. Quite surprisingly, the Feynman
transform is not an ordinary modular operad, but its odd version.

Definition 6.24 An odd modular operad12 with step s is a modular module

T = {T (S; g) ∈ Chain; (S; g) ∈ Cor× A
}

(6.77)

together with degree +1 morphisms (compositions)

a•b : T
(
S1 � {a}; g1

)⊗T
(
S2 � {b}; g2

)→ T (S1 � S2; g1 + g2) (6.78)

12This terminology was introduced by Ralph Kaufmann; the name “twisted modular operad” is
sometimes used, too.
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defined for arbitrary finite disjoint sets S1, S2, symbols a, b, genera g1, g2 ∈ A, and
degree +1 contractions

•uv = •vu : T
(
S � {u, v}; g)→ T (S; g + s) (6.79)

given for any finite set S, genus g ∈ A, and symbols u, v. These data are required
to satisfy axioms of Definition 6.16 for the operations a◦b and ◦uv , with the only
difference that the formulas in axioms (iv)–(vii) acquire the minus signs, i.e., read
as

a•b(1⊗ c•d ) = − c•d ( a•b⊗1), (6.80)

•ab •cd = − •cd •ab, (6.81)

•ab c•d = − •cd a•b, and (6.82)

a•b (•uv ⊗ 1) = − •uv a•b . (6.83)

A morphism of odd modular operads is a morphism of the underlying modular
modules commuting with all structure operations.

The minus signs in (6.80)–(6.83) are forced by the Koszul sign conventions,
as both the compositions and contractions are “objects” of degree +1. Informally,
odd modular operads are modular operads whose structure operations have “wrong”
degrees and also the signs of some of the axioms are “wrong.” Because of nontrivial
signs and degrees, odd modular operads, unlike the ordinary ones, do not exist in an
arbitrary symmetric monoidal category but, e.g., in symmetric monoidal categories
enriched over graded vector spaces.

Remark 6.11 The category of Lin of Z-graded vector spaces and their homogeneous
linear maps of arbitrary degrees has two symmetric monoidal structures, the stan-
dard one and the one which we call, from reasons which will became clear later, the
Montreal monoidal structure. The monoidal product of objects is for both structures
the standard tensor product of graded vector spaces, but the structures differ by their
actions on morphisms. The prevailing convention is that, for homogeneous maps
f : V ′ → W ′, g : V ′′ → W ′′ and homogeneous vectors u ∈ V ′, v ∈ W ′ one
defines

(f ⊗ g)(u⊗ v) = (−1)|g||u|f (u)⊗ g(v), (6.84)

while some categorists at McGill University in Montreal would prefer

(f ⊗ g)(u⊗ v) = (−1)|f ||v|f (u)⊗ g(v). (6.85)
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The second convention would follow from the Koszul sign rule if we apply the
morphisms from the right. Equation (6.85) then reads as

(u⊗ v)(f ⊗ g) = (−1)|f ||v|f (u)⊗ g(v)

and the unexpected sign comes from the commuting f over v. We denote, only for
the purposes of this remark, the first monoidal structure by ⊗S and second by ⊗M

(K abbreviating standard and M Montreal). We denote the corresponding monoidal
categories by LinS and LinM , respectively.

The two monoidal structures on Lin are related as follows. For any monoidal
category M with the monoidal product # one can equip the same M by the opposite
monoidal structure #† defined on objects by A #†B := A # B and similarly on
morphisms; let us denote M with the opposite monoidal structure by M†. It turns out
that the categories Lin†

M and LinS are isomorphic. The isomorphism is the identity of

the underlying categories, and the transformation turning ⊗†
M into ⊗S is the family

of maps

ΦU,V : U ⊗†
MV = V ⊗ U → U ⊗ V = U ⊗S V

given by ΦU,V (v ⊗ u) := v ⊗ u for u ∈ U and v ∈ V .13

The category Lin with both monoidal structures is enriched over itself. For
homogeneous maps f : A → V and g : W → B, the corresponding enriched
functors

f # : Lin(V ,W) → Lin(A,W) and g# : Lin(V ,W)→ Lin(V ,B)

are given, for ϕ ∈ Lin(V ,W), by

f #(ϕ) := (−1)|f ||ϕ|ϕ ◦ f and g#(ϕ) := ϕ ◦ g.

One can easily check that the obvious canonical isomorphism

Lin
(
A⊗ B,C

) ∼= Lin
(
A,Lin(B,C)

)

is functorial in B for both ⊗ = ⊗S and ⊗ = ⊗M .
Since odd modular operads possess operations of odd degrees, the form of

their axioms evaluated at concrete elements may depend on the chosen monoidal
structure of Lin. Let us, for instance, evaluate axiom (6.80) at homogeneous
elements

x ∈ T
(
S1 � {a}; g1

)
, y ∈ T

(
S2 � {b, c}; g2

)
and z ∈ T

(
S3 � {d}; g3

)

13Notice there are no signs!
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i.e., calculate

a•b(1⊗ c•d )(x ⊗ y ⊗ z) = − c•d ( a•b⊗1)(x ⊗ y ⊗ z).

While in LinS we get

(−1)|x|x a•b(y c•d z) = −(x a•b y) c•d z, (6.86)

in LinM we obtain

x a•b(y c•d z) = −(−1)|z|(x a•b y) c•d z. (6.87)

Likewise, axiom (6.83) in LinS reads

•uv (x) a•b y = − •uv (x a•b y), (6.88)

while in LinM one would get

(−1)|y| •uv (x) a•b y = − •uv (x a•b y) (6.89)

for x, y belonging to the appropriate components of T . Also the derivation property
of the differential with respect to the a•b-operation depends on the chosen monoidal
structures. In LinS it reads

d(x a•b y) = −(dx) a•b y − (−1)|x|x a•b(dy),

while in LinM it is

d(x a•b y) = −(−1)|y|(dx) a•b y − x a•b(dy).

Axioms (6.81) and (6.82) are the same in both monoidal structures.
It fortunately turns out that the categories of odd modular operads in LinS and in

LinS are isomorphic. Indeed, we leave as an exercise to prove that the modification

x a•b y 
→ (−1)|x|+|y|x a•b y, •uv(x) 
→ (−1)|x| •uv (x), d(x) 
→ (−1)|x|d(x),
(6.90)

turns an odd modular operad in LinS into one in LinM and vice versa. If not stated
otherwise, all odd modular operads will be considered in Lin with the standard
monoidal structure. For that reason we drop the subscript S.



152 6 Operads

Example 6.30 Recall [11, Definition 13] that an anti-associative algebra is a couple
A = (A, �) consisting of a graded vector space A and a degree +1 operation � :
A⊗ A→ A which is anti-associative, i.e.,

a � (b � c)+ (−1)|a|(a � b) � c = 0,

for all a, b, c ∈ A. An odd modular operad with step s �= 0 such that T (S; g) �= 0
only if card(S) = 2 and g = 0 is precisely an anti-associative algebra A with
an involution τ : A → A such that τ (ab) = τ (b)τ (a) for all a, b ∈ A, cf.
Example 6.23.

Example 6.31 Let V be a graded vector space and s ∈ V ⊗ V a symmetric
degree +1 tensor. The construction of the modular endomorphism operad given in
Examples 6.6 and 6.28 translate verbatim, though the operations a•b and •uv now
have degree +1.

One must however be careful. While in the case of ordinary modular operads
both constructions of the a◦b operation, i.e., the one via composition (6.15) and the
one via composition (6.16) lead to the same results, now the results are different.
The reason is that, while for |s| = 0 the above compositions are dual to each
other, if |s| = 1 they are not, because the duality (2) acquires a nontrivial sign.
One immediately sees that the resulting f a•b g’s differ by (−1)|f |+|g|.

Likewise, compositions (6.62) and (6.64) are in the |s| = 1 case not dual to each
other and the resulting •uv(f )’s differ by (−1)|f |. What happens is so surprising that
we formulate it as a proposition; recall that LinS and LinM denote the two versions
of the category Lin discussed in Remark 6.11.

Proposition 6.11 For |s| = 1 compositions (6.16) and (6.64) lead to an odd
modular operad in LinS , while compositions (6.15) and (6.62) to an odd modular
operad in LinM .

Proof. Let us show that the a•b-operations defined by the odd version of (6.16)
satisfy (6.86). Since |s̄| = |¯̄s|, one must be cautious. We have

f a•b(g c•d h) =
(
1S1 ⊗ s̄ ⊗ 1S2�S3

)#(
f ⊗ (g c•d h)

)

= (1S1 ⊗ s̄ ⊗ 1S2�S3

)#(
f ⊗ (1S2�{b} ⊗ ¯̄s ⊗ 1S3)

#(g ⊗ h)
)

= (−1)|f |
(
1S1 ⊗ s̄ ⊗ 1S2�S3

)#(1S1�{a,b}�S2 ⊗ ¯̄s ⊗ 1S3

)#
(f ⊗ g ⊗ h),

while

(f a•b g) c•d h =
(
1S1�S2 ⊗ ¯̄s ⊗ 1S3

)#(
(f a•b g)⊗ h

)

= (1S1�S2 ⊗ ¯̄s ⊗ 1S3

)#(
(1S1 ⊗ s̄ ⊗ 1S2�{c})#(f ⊗ g)⊗ h

)

= (1S1�S2 ⊗ ¯̄s ⊗ 1S3

)#(1S1 ⊗ s̄ ⊗ 1S2�{c,d}�S3

)#
(f ⊗ g ⊗ h).
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To finish the proof of (6.86), we observe that

(
1S1 ⊗ s̄ ⊗ 1S2 ⊗ ¯̄s ⊗ 1S3

)# = (1S1 ⊗ s̄ ⊗ 1S2�S3

)#(
1S1�{a,b}�S2 ⊗ ¯̄s ⊗ 1S3

)#
= −(1S1�S2 ⊗ ¯̄s ⊗ 1S3

)#(
1S1 ⊗ s̄ ⊗ 1S2�{c,d}�S3

)#
,

the minus sign coming from commuting s̄ over ¯̄s.
Let us also verify that the a•b-operations defined by the odd version of

composition (6.15) satisfy (6.87). The related calculation is of course obtained from
the above one by removing duals and inverting the order of compositions but, very
crucially, without inserting Koszul signs. We obtain

f a•b(g c•d h) =
(
f ⊗ (g c•d h)

)(
1S1 ⊗ s̄ ⊗ 1S2�S3

)
= (f ⊗ (g ⊗ h)(1S2�{b} ⊗ ¯̄s ⊗ 1S3)

)(
1S1 ⊗ s̄ ⊗ 1S2�S3

)
= (f ⊗ g ⊗ h)

(
1S1�{a,b}�S2 ⊗ ¯̄s ⊗ 1S3

)(
1S1 ⊗ s̄ ⊗ 1S2�S3

)

on the one hand and

(f a•b g) c•d h =
(
(f a•b g)⊗ h

)(
1S1�S2 ⊗ ¯̄s ⊗ 1S3

)
= ((f ⊗ g)(1S1 ⊗ s̄ ⊗ 1S2�{c})⊗ h

)(
1S1�S2 ⊗ ¯̄s ⊗ 1S3

)

= (−1)|h|(f ⊗ g ⊗ h)
(
1S1 ⊗ s̄ ⊗ 1S2�{c,d}�S3

)(
1S1�S2 ⊗ ¯̄s ⊗ 1S3

)

on the other hand. Axiom (6.87) now follows from the equality

(
1S1 ⊗ s̄ ⊗ 1S2 ⊗ ¯̄s ⊗ 1S3

) = (1S1 ⊗ s̄ ⊗ 1S2�{c,d}�S3

)(
1S1�S2 ⊗ ¯̄s ⊗ 1S3

)
= −(1S1�{a,b}�S2 ⊗ ¯̄s ⊗ 1S3

)(
1S1 ⊗ s̄ ⊗ 1S2�S3

)
.

Notice that the sign difference between the results of the above two computations
is (−1)|x| versus (−1)|z| as it should be. The verification of axioms (6.88)
resp. (6.89) is similar.

We will call the family (6.61) with the a•b- and •uv-operations defined via
compositions (6.16) and (6.64) with |s| = 1 the odd modular endomorphism operad
and denote it EndV ; whether EndV means the odd modular endomorphism operad
or the ordinary one (with |s| = 0) will always be clear from the context. For a
degree +1 bilinear form B : V ⊗ V → k we also have the odd modular version of
the operad DneV of Example 6.7. We leave the details to the reader.



154 6 Operads

Remark 6.12 Odd modular operads have their skeletal versions. For T as in (6.77),
n ≥ 0 and g ∈ A, denote T (n; g) := T

([n]; g). The degree+1 operations

i•j : T (m+ 1; g1)⊗T (n+ 1; g2)→ T (m+ n; g1 + g2)

and

•ij : T (n+ 2; g + s)→ T (n; g), 1 ≤ i, j ≤ n+ 2, g ∈ A

are defined by obvious formulas analogous to (6.8) resp. (6.70). The axioms for
these operations are the same as the skeletal axioms for modular operads, only the
axioms corresponding to (6.80)–(6.83) acquire the minus sign.

Example 6.32 The skeletal version of the odd endomorphism operad from Exam-
ple 6.31 is described as follows. One has EndV (n; g) ∼= Lin(V ⊗n,k) for n ≥ 0, g ∈
A as in (6.72), with the skeletal i•j -operations defined by formula (6.25), but this
time with

κ = |g|(|f |+1)+ |s′′i | + |s′i |(|vi+n| + · · · + |vm+n|)
+ |s′′i |(|vn+i−j+1| + · · · + |vi+n−1|).

The skeletal contractions •ij are given by formula (6.73) with

κ = |f | + (|v1| + · · · + |vi−1|)+ |s′′i |(|vi | + · · · + |vj−2|).

We leave the related straightforward verification to the reader.

Odd endomorphism operads are necessary for the definition of algebras over odd
modular operads.

Definition 6.25 Let V be a graded vector space and s ∈ V ⊗ V a symmetric
degree +1 tensor. An algebra over an odd modular operad T , or a T -algebra,
is a morphism α : T → EndV of odd modular operads.

The main source of examples of algebras over odd modular operads will be
provided by algebras over the Feynman transform of a modular operads introduced
in Sect. 7.2.

Definition 6.26 For a finite set X, let ↑ kX be the free k-module with basis
X, considered as a dg-vector space concentrated in degree 1. Define the one-
dimensional dg-vector space concentrated in degree card(X):

det(X) = det(kX) := ∧|X|(↑kX),
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where∧|X|(−) denotes the |X|th exterior (Grassmann) power. Since kX is the space
of k-valued functions on X, det(X) is “contravariant in X.”

Free odd modular operads are constructed as the ordinary ones, with the twisting
build into the construction via the determinant of the set of edges of the underlying
graphs. Explicitly, for a labeled graph Γ and a modular module E we take the odd
analog

Ẽ(Γ ) := det
(
Edg(Γ )

)⊗ ⊗
v∈Vert(Γ )

E
(
Leg(v); �(v))

of (6.33). Each isomorphism φφ : Γ 0
∼=−→ Γ 1 of labeled graphs again induces an

isomorphism

Ẽ(φφ) : Ẽ(Γ 0)
∼=−→ Ẽ(Γ 1).

For a finite set S and a genus g ∈ A we define

F̃(E)(S; g) :=
⊕

G Ẽ(Γ )

∼
with the sum taken over all labeled graphs Γ = (Γ, �) with Leg(Γ ) = S and
g(Γ ) = g. As before, the relation∼ identifies x ∈ Ẽ(Γ 0) with its image Ẽ(φφ)(x) ∈
Ẽ(Γ 1) for any isomorphism φφ : Γ 0 → Γ 1 that induces the identity of the set of
the legs.

Proposition 6.12 The modular module F̃(E) = {F̃(E)(S; g) | S ∈ Cor, g ∈ A
}

is an odd modular operad.

Proof. Isomorphisms of finite sets act on F̃(E) by relabeling the legs of the
underlying graphs. With this action, F̃(E) is a modular module. For the grafting
Γ 1 a◦b Γ 2 of labeled graphs in (6.65) one clearly has

↑(Ẽ(Γ ′)⊗ Ẽ(Γ ′′)
) ∼= det

({e})⊗ Ẽ(Γ 1)⊗ Ẽ(Γ 2) ∼= Ẽ(Γ 1 a◦b Γ 2)

with e := {a, b} the newly created edge of the underlying graph (Γ1 a◦b Γ2). One
then has the induced composed morphism of the quotients

F̃(E)
(
S1 � {a}, g1

)⊗F̃(E)
(
S2 � {b}, g2

) ↑−→
↑ (̃F(E)(S1�{a}, g1

)⊗ F̃(E)
(
S2 � {b}, g2

)) ∼=−→ F̃(E)(S1 � S2, g1 + g2)

which we take as a definition of the compositions.
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The contractions are constructed similarly, this time using the isomorphism

↑Ẽ(Γ ) ∼= det
({f })⊗ Ẽ(Γ ) ∼= Ẽ(◦uvΓ ; g),

where ◦uvΓ is as in Definition 6.22, and f := {u, v}. The contraction is then the
composed map

F̃(E)
(
S � {u, v}; g) ↑−→ ↑ (̃F(E)(S � {u, v}; g)) ∼=−→ F̃(E)(S; g + s).

Thanks to the presence of the suspensions, the operations a◦b and ◦uv con-
structed above have degree +1 as required. The axioms of odd modular operads
can be verified directly.

Proposition 6.13 The odd modular operad F̃(E) is the free odd modular operad
on the modular module E.

Proof. The operad F̃(E) is the triple (monad) MD with D the dualizing cocycle K,
evaluated at the modular module E, see Theorem 5.47 and Example 5.52 of [12] for
MD and K, respectively.

As we already know, removing the contractions ◦uv and the genus grading from
the definition of (ordinary) modular leads to cyclic operads. A natural question is
what happens if we do the same in the definition of odd modular operads. We obtain:

Definition 6.27 An odd cyclic operad P is a cyclic module

P = {P(C) ∈ Chain | C ∈ Cor
}

together with degree +1 morphisms

a◦b :P
(
C1 � {a}

)⊗P
(
C2 � {b}

)→P(C1 � C2)

defined for arbitrary disjoint finite sets C1, C2 and symbols a, b. These data satisfy
verbatim analogs of axioms (i)–(iv) of Definition 6.1, except that equality (6.3) now
involves the minus sign, i.e., it reads

a◦b(1⊗ c◦d) = − c◦d ( a◦b⊗1). (6.91)

Odd cyclic operads are however not interesting per se because they are desus-
pensions of ordinary cyclic operads. More precisely, for a cyclic operad P as in
Definition 6.1 consider the cyclic module

↓P = { ↓P(C) ∈ Chain | C ∈ Cor
}
,
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where ↓P(C) is the desuspension of the dg-vector space P(C), i.e., P(C) with
degrees shifted down by one. We define the composition operations of ↓P using
the ones of P as the composition

↓P(C1 � {a}
)⊗ ↓P(C2 � {b}

) ↑⊗↑−−−→

P
(
C1�{a}

)⊗P
(
C2 � {b}

) a◦b−−−→ P(C1 � C2)
↓−→ ↓P(C1 � C2).

It is easy to verify that the above construction is an odd modular operad. The
following claim is obvious.

Proposition 6.14 The correspondenceP 
−→ ↓P is an equivalence between the
category of cyclic operads and the category of odd cyclic operads.

It is however not true that the desuspension of a modular operad is an odd
modular operad. For instance, the induced contractions on the desuspension would
have degree 0 not +1 as required.
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7Feynman Transform of aModular Operad

The aim of this chapter is to recall an analog of the bar construction for modular
operads, called in this context the Feynman transform and introduced in [2], see
also [3, Section II.5.3].

7.1 Modules and Derivations

We define modules over odd modular operads and derivations with values in these
modules. We then introduce trivial extensions of odd operads by these modules
and prove that derivations can be encoded by morphisms of these extensions. This
will imply that a derivation whose source is a free odd modular operad is uniquely
determined by its restriction to the modular module of generators. This scheme is
standard, but some care is needed to get signs right, as the operations of odd operads
and their modules have degree +1.

Definition 7.1 Let T be an odd modular operad with compositions a•b and
contractions •uv as in Definition 6.24. A T -module, or a module over T is a
modular module

M = {M(S; g) ∈ Chain; (S; g) ∈ Cor× A
}

together with degree +1 morphisms

a
L•b : T

(
S1 � {a}; g1

)⊗M
(
S2 � {b}; g2

)→ M(S1 � S2; g1 + g2)

defined for arbitrary disjoint finite sets S1, S2, symbols a, b, and genera g1, g2 ∈ A,
and degree +1 maps

�uv = �vu : M
(
S � {u, v}; g)→ M(S; g + s)
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given for any finite set S, genus g ∈ A, and symbols u, v. These data satisfy the
following axioms.

(i) For arbitrary isomorphisms ρ : S1 � {a} → T1, σ : S2 � {b} → T2 of finite
sets and genera g1, g2 ∈ A, one has the equality

M
(
ρ|S1 � σ |S2

)
a
L•b = ρ(a)

L•σ(b)
(
T (ρ)⊗M(σ )

)

of maps

T
(
S1 � {a}; g1

)⊗M
(
S2 � {b}; g2

)→ M
(
T1 � T2 \ {ρ(a), σ (b)}; g1 + g2

)
.

(ii) For any isomorphism ρ : S �{u, v} → T of finite sets and a genus g ∈ A, one
has the equality

M
(
ρ|S
)
�uv = �ρ(u)ρ(v)M(ρ)

of maps M
(
S � {u, v}; g)→ M

(
T \ {ρ(u), ρ(v)}; g + s

)
.

(iii) For mutually disjoint sets S1, S2, S3, symbols a, b, c, d , and genera
g1, g2, g3 ∈ A, one has the equality

a
L•b(1⊗ c

L•d) = − c
L•d( a•b⊗1) (7.1)

of maps from T
(
S1 � {a}; g1

)⊗T
(
S2 � {b, c}; g2

)⊗M
(
S3 � {d}; g3

)
to the

space M
(
S1 � S2 � S3; g1+g2+g3

)
.

(iv) For S1, S2, S3, a, b, c, d and g1, g2, g3 ∈ A as in (iii), one has the equality

a
L•b (1⊗ d

L•c) = − d
L•c (1⊗ a

L•b)(τ ⊗ 1)

of maps from T
(
S1 � {a}; g1

)⊗T
(
S2 � {d}; g2

)⊗M
(
S3 � {b, c}; g3

)
to the

space M
(
S1 � S2 � S3; g1+g2+g3

)
.

(v) For a finite set S, symbols a, b, c, d and a genus g ∈ A one has the equality

�ab �cd = − �cd �ab

of maps M
(
S � {a, b, c, d}; g)→ M(S; g + 2s).

(vi) For finite sets S1, S2, symbols a, b, c, d and genera g1, g2 ∈ A, one has the
equality

�ab c
L•d = − �cd a

L•b
of maps T

(
S1 � {a, c}; g1

)⊗M
(
S2 � {b, d}; g2

)→ M(S1 � S2; g1 + g2 + s).
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(vii) For finite sets S1, S2, symbols a, b, u, v, and genera g1, g2 ∈ A, one has the
equality

a
L•b (•uv ⊗ 1) = − �uv a

L•b (7.2)

of maps T
(
S1 � {a, u, v}; g1

)⊗M
(
S2 � {b}; g2

)→ M(S1 �S2; g1 + g2 + s).
(viii) For finite sets S1, S2, symbols a, b, u, v, and genera g1, g2 ∈ A, one has the

equality

a
L•b (1⊗ �uv) = − �uv a

L•b
of maps T

(
S1 � {a}; g1

)⊗M
(
S2 � {b, u, v}; g2

)→ M(S1 �S2; g1 + g2 + s).

Remark 7.1 The superscript “L” of a
L•b reminds us that we apply an element of T

from the left to an element of M. It will be convenient to define also the auxiliary
right composition

a
R•b : M(S1 � {a}; g1)⊗T (S2 � {b}; g2)→ M(S1 � S2; g1 + g2)

as a
R•b := b

L•a τ , i.e. on elements as

x a
R•b y := (−1)|x||y|y b

L•a x

for x ∈ M
(
S1 � {a}; g1

)
and y ∈ T

(
S2 � {b}; g2

)
. One easily proves the following

properties of this operation.

(i) For arbitrary isomorphisms ρ : S1 � {a} → T1 and σ : S2 � {b} → T2 of finite
sets and genera g1, g2 ∈ A, one has the equality

M(ρ|S1 � σ |S2) a
R•b = ρ(a)

R•σ(b) (M(ρ)⊗T (σ ))

of maps

M
(
S1 � {a}; g1

)⊗T
(
S2 � {b}; g2

)→ M
(
T1 � T2 \ {ρ(a), σ (b)}; g1 + g2

)
.

(ii) For finite sets S1, S2, symbols a, b, c, d and genera g1, g2 ∈ A, one has the
equality

�ab c
R•d = − �cd a

R•b
of maps M

(
S1 � {a, c}; g1

)⊗T
(
S2 � {b, d}; g2

)→ M(S1 � S2; g1 + g2 + s).
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(iii) For finite sets S1, S2, symbols a, b, u, v, and genera g1, g2 ∈ A, one has the
equality

a
R•b (�uv ⊗ 1) = − �uv a

R•b
of maps M

(
S1 � {a, u, v}; g1

)⊗T
(
S2 � {b}; g2

)→ M(S1 � S2; g1 + g2 + s).
(iv) For finite sets S1, S2, symbols a, b, u, v, and genera g1, g2 ∈ A, one has the

equality

a
R•b (1⊗ •uv) = −�uv a

R•b
of maps M

(
S1 � {a}; g1

)⊗T
(
S2 � {b, u, v}; g2

)→ M(S1 � S2; g1 + g2 + s).
(v) For mutually disjoint sets S1, S2, S3, symbols a, b, c, d and genera g1, g2, g3 ∈

A, one has the equality

a
L•b (1⊗ c

R•d) = − c
R•d ( aL•b⊗1) (7.3)

of maps from T
(
S1 � {a}; g1

)⊗M
(
S2 � {b, c}; g2

)⊗T
(
S3 � {d}; g3

)
to the

space M
(
S1 � S2 � S3; g1+g2+g3

)
.

(vi) For mutually disjoint sets S1, S2, S3, symbols a, b, c, d and genera g1, g2, g3 ∈
A, one has the equality

a
R•b (1⊗ c•d ) = − c

R•d ( aR•b⊗1) (7.4)

of maps from M
(
S1 � {a}; g1

)⊗T
(
S2 � {b, c}; g2

)⊗T
(
S3 � {d}; g3

)
to the

space M
(
S1 � S2 � S3; g1+g2+g3

)
.

Since the pasting schemes for modular operads and their modules are abstract
graphs, there is no concept of “left” and “right” compositions so, unlike, e.g. left
versus right modules over associative algebras, a

L•b and a
R•b are materializations of

the same operation which differ only by the way they are written on paper.

Example 7.1 Any odd modular operadT with the structure operations a•b and •uv
is a module over itself, with

a
L•b := a•b and �uv := •uv.

All axioms of Definition 7.1 clearly follow from Definition 6.24 of an odd operad.
Slightly less straightforward is only (iv) obtained by applying (1⊗τ ) from the right
on (6.80), and (vii) obtained by applying τ from the right on (6.83).
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Definition 7.2 Let M be a module over an odd operad T . A degree k derivation
θ : T → M is a degree k morphism

θ = {θ(S; g) : T (S; g)→ M(S; g); (S; g) ∈ Cor× A
}

of modular modules1 satisfying, for finite S1, S2, symbols a, b, and genera g1, g2 ∈
A the equality

θ a•b = (−1)k
(
a
R•b(θ ⊗ 1)+ a

L•b(1⊗ θ)
)
, (7.5)

of maps T
(
S1 �{a}; g1

)⊗T
(
S2 �{b}; g2

)→ M(S1 �S2; g1+g2), and for a finite
set S, symbols u, v, and a genus g ∈ A the equality

θ•ab = (−1)k�abθ (7.6)

of maps T
(
S � {u, v}; g)→ T (S; g + s).

One can of course replace a
R•b(θ⊗1) in (7.5) by b

L•a τ (θ⊗1) = b
L•a(1⊗θ)τ , but

using a
R•b makes the analogy between (7.5) and, e.g. the standard Leibniz property

of derivations of associative algebras manifest. The auxiliary a
R•b will also simplify

some formulas in the proofs that follow.

Example 7.2 The case when M = T , considered as a module over itself as in
Example 7.1, is particularly important. With this convention, an example of a
degree +1 derivation is the internal differential dT : T → T of an odd modular
operad.

The following lemma in which an odd operad T is considered as a module over
itself will be used in the proof of Theorem 7.2.

Lemma 7.1 Let α, β : T → T be derivations of an odd modular operad T such
that α is of degree k and β of degree l. Then the linear map

[α, β] := αβ − (−1)klβα : T → T

is a degree k+l derivation. In particular, if k = l = 1, then both α2, β2 and αβ+βα
are degree 2 derivations.

1See Remark 6.10.
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Proof. For homogeneous x ∈ T
(
S1 � {a}; g1

)
and y ∈ T

(
S2 � {a}; g2

)
, one has

αβ(x a•b y) = (−1)lα
(
β(x) a•b y + (−1)l|x|x a•b βy

)

= (−1)k+l
(
αβ(x) a•b y + (−1)(l+|x|)k β(x) a•b α(y)

+ (−1)l|x|α(x) a•b β(y)+ (−1)(k+l)|x|x a•b αβ(y)
)
.

Likewise

−(−1)kl βα(x a•b y) = − (−1)kl (−1)kβ
(
α(x) a•b y + (−1)k|x|x a•b αy

)

= (−1)k+l
(
− (−1)klβα(x) a•b y − (−1)l|x|α(x) a•b β(y)

− (−1)(k+l)|x|β(x) a•b α(y)− (−1)kl+(k+l)|x|x a•b βα(y)
)
.

Summing the above two equations we get that

[α, β](x a•b y) = (−1)(k+l)
([α, β](x) a•b y + (−1)(k+l)|x|x a•b[α, β](y)

)
,

which is (7.5) for θ = [α, β] evaluated at x ⊗ y. In the same vein, one obtains for
z ∈ T

(
S � {u, v}) that

αβ(•uvz) = (−1)lα •uv β(z) = (−1)k+l •uv αβ(z)

while

−(−1)klβα(•uvz) = −(−1)kl(−1)kβ •uv α(z) = (−1)k+l
(− (−1)kl •uv βα(z)

)

therefore

[α, β](•uvz) = (−1)k+l •uv
([α, β](z)),

which is (7.6) for θ = [α, β] evaluated at z. To prove the last sentence of the lemma,
one needs to observe that if deg(α) = deg(β) = 1, then α2 = 2[α, α], β2 = 2[β, β]
and αβ + βα = [α, β].

Definition 7.3 The trivial extension of an odd modular operad T by a T -module
M is an odd modular operad T ⊕M whose underlying modular module is defined by

(T ⊕M)(S; g) := T (S; g)⊕M(S; g), (S; g) ∈ Cor× A,
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with the obvious diagonal action of isomorphisms of finite sets. The structure
operations (6.78) are given by

(t1,m1) a•b(t2,m2) := (t1 a•b t2, t1 a
L•b m2 +m1 a

R•b t2),

where

t1 ∈ T
(
S1 � {a}; g1

)
, t2 ∈ T

(
S2 � {b}; g2

)

and

m1 ∈ M
(
S1 � {a}; g1

)
, m2 ∈ M

(
S2 � {b}; g2

)
.

The contractions (6.79) are defined diagonally,

•uv(t,m) := (•uvt, �uvm).

for t ∈ T
(
S � {u, v}; g) and m ∈ M

(
S � {u, v}; g).

Lemma 7.2 The modular module T ⊕ M with the operations defined above is
an odd modular operad.

Proof. The axioms of modular operads can be verified directly. Let us, for instance,
verify axiom (6.80) of Definition 6.24. For

t1 ∈ T
(
S1 � {a}; g1

)
, t2 ∈ T

(
S2 � {b, c}; g2

)
, t3 ∈ T

(
S3 � {d}; g3

)

and

m1 ∈ M
(
S1 � {a}; g1

)
, m2 ∈ M

(
S2 � {b, c}; g2

)
, m3 ∈ M

(
S3 � {d}; g3

)

one has

a•b(1⊗ c•d)
(
(t1,m1)⊗ (t2,m2)⊗ (t3,m3)

)

= (t1,m1) a•b(t2 c•d t3, t2 c
L•d m3 +m2 c

R•d t3)
= (t1 a•b(t2 c•d t3), t1 a

L•b(t2 c
L•d m3)+ t1 a

L•b(m2 c
R•d t3)+m1 a

R•b(t2 c•d t3)
)
,

while

− c•d( a•b⊗1)
(
(t1, m1)⊗ (t2,m2)⊗ (t3,m3)

)

= −(t1 a•b t2, t1 a
L•b m2 +m1 a

R•b t2) cL•d(t3,m3)

= −((t1 a•b t2) c•d t3, (t1 a•b t2) cL•d m3 + (t1 a
L•b m2) c

R•d t3 + (m1 a
R•b t2) cR•d t3

)
.
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On the other hand, one has

t1 a•b(t2 c•d t3) = −(t1 a•b t2) c•d t3
by (6.80),

t1 a
L•b(t2 c

L•d m3) = −(t1 a•b t2) cL•d m3

by (7.1),

t1 a
L•b(m2 c

R•d t3) = −(t1 a
L•b m2) c

R•d t3
by (7.3), and

m1 a
R•b(t2 c•d t3) = −(m1 a

R•b t2) cR•d t3
by (7.4). The requisite equality (6.80) follows immediately.

Definition 7.4 Let T be an odd modular operad and M a T -module with the
structure operations a

L•b and �ab. We define the modular module sM by

sM(S; g) := ↑M(S; g), (S; g) ∈ Cor× A,

with the actions (6.48) given as sM(σ ) := ↑M(σ )↓ . For disjoint finite sets S1, S2,
symbols a, b and genera g1, g2 ∈ A we define degree +1 morphisms

a

L• b : T
(
S1 � {a}; g1

)⊗ sM
(
S2 � {b}; g2

)→ sM(S1 � S2; g1 + g2)

by

a

L• b := −↑ a
L•b(1⊗↓). (7.7)

For a finite set S, genus g ∈ A, and symbols u, v we also define degree +1 maps

�
uv
= �

vu
: sM(S � {u, v}; g)→ sM(S; g + s)

by the formula

�
uv
:= −↑�uv ↓ . (7.8)

The auxiliary “right” actions a

R• b : sM⊗T → sM of the suspension sM are given
by a

R• b := −↑ a
R•b(↓ ⊗ 1).
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The T -module sM is called the suspension of M. The desuspension s−1M is
defined analogously. We define skM for an arbitrary integer k ∈ Z by iteration.

One has the expected:

Lemma 7.3 The modular module sM with the above operations is a T -module.

Proof. A straightforward verification. Let us, for instance, check axiom (vii) of
Definition 7.1. We have, by the definition of the structure operations of sM and
by (7.2) for the suspension M,

a

L• b(•uv ⊗ 1) = −↓ a
L•b(1⊗ ↑)(•uv ⊗ 1) = ↓ a

L•b(•uv ⊗ 1)(1⊗ ↑)
= − ↓ �uv a

L•b(1⊗ ↑).

Similarly,

−�
uv a

L• b = −↓�uv↑↓ a
L•b(1⊗ ↑) = −↓�uv a

L•b(1⊗↑),

so a

L• b(•uv ⊗ 1) = −�
uv a

L• b as required.

Remark 7.2 The minus sign in (7.7) resp. (7.8) defining a

L• b resp. �
ab

is crucial
for establishing axioms (iii) and (vii) of Definition 7.1 for sM. These axioms are
not homogeneous with respect to the number of operations, so they are not invariant
under the change

a

L• b 
→ − a

L• b and/or �
uv

→ −�

uv
.

The other axioms are not sign-sensitive. We encourage the reader to analyze the
proof of Lemma 7.3 and verify that without the minus sign in (7.8), the equality

a

L• b(•uv ⊗ 1) = −�
uv a

L• b would not hold.

Lemmas 7.2 and 7.3 imply that T ⊕ skM is an odd modular operad for each
integer k. The following lemma characterizes derivations via homomorphisms.

Lemma 7.4 Let θ : T → M a degree k morphism of modular modules. Associate
to it a degree 0 morphism θ : T → s−kM of modular modules by

θ := ↓kθ

and another degree 0 morphism Θ : T → T ⊕ s−kM of modular modules given
by

Θ := (1T , θ).
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Then the following three statements are equivalent:

(i) θ is a degree k derivation,
(ii) θ is a degree 0 derivation, and
(iii) Θ is a morphism of odd modular operads.

Proof. Applying the iterated desuspension↓k to both sides of the Leibniz rule (7.5),
we obtain

↓kθ a•b = (−1)k
(↓k aR•b(↑k⊗1)(↓kθ ⊗1)+↓k aL•b(1⊗↑k)(1⊗↓kθ)). (7.9)

Taking into account that the structure operations a
L•b of M and the structure

operations a

L• b of the iterated desuspension s−kM are related by the iteration
of (7.7) as

a

L• b = (−1)k ↓ k
a
L•b(1⊗ ↑ k)

and that, likewise,

a

R• b = (−1)k ↓ k
a
R•b(↑ k ⊗ 1)

we see that (7.9) is satisfied if and only if θ fulfills

θ a•b = a

R• b(θ ⊗ 1)+ a

L• b(1⊗ θ). (7.10)

Similarly, applying ↓ k to both sides of (7.6) gives

↓kθ•uv = (−1)k↓k�uv↑k↓kθ.

which is equivalent to

θ•uv = �
uv
θ. (7.11)

Since (7.10) together with (7.11) means that θ is a degree 0 derivation, we proved
the equivalence of (i) and (ii).

Let us check that (ii) is satisfied if and only if Θ = (1, θ ) is an operad morphism,
i.e. that

(
t1 a•b t2, θ(t1 a•b t2)

) = (t1, θ (t1)) a•b (t2, θ(t2)) (7.12)
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for t1 ∈ ⊗
(
S1 � {a}; g1

)
, t2 ∈ ⊗

(
S2 � {a}; g2

)
, and

( •uv t, θ •uv (t)) = •uv
(
t, θ(t)

)
(7.13)

for t ∈ T
(
S � {u, v}; g).

By the definition of the operad structure of T ⊕ s−kM, the right-hand side
of (7.12) equals

(
t1 a•b t2, t1 a

L• b θ(t2)+ θ(t1) a
R• b t2

)
.

Since the degree of θ is 0, the second component of the above expression is precisely
the right-hand side of (7.10) evaluated at t1⊗ t2, so (7.12) holds. Similarly, the right-
hand side of (7.13) equals

(
(•uvt, � uv

θ(t)
)
), thus (7.11) is apparently equivalent

to (7.13). This shows that (ii) is equivalent to (iii) and finishes the proof of the
lemma.

Theorem 7.1 below characterizes derivations of the free odd modular operad
F̃(E) generated by a modular module E. Let us recall that the freeness of F̃(E)
means that, for each odd modular operad T and a morphism f : E → T of
modular modules, there exists a unique morphism Φ of odd modular operads such
that the diagram

E

(E)

ι

f

Φ

in which ι : E → F̃(E) is the inclusion, commutes.

Theorem 7.1 Let M be a module over the free odd modular operad F̃(E). The
restriction θ 
−→ θ |E to the space of generators defines a one-to-one correspon-
dence between degree k derivations θ : F̃(E)→ M and degree k modular module
morphisms ϑ : E → M.

Proof. To simplify the arguments, we start by showing that we may assume without
loss of generality that k = 0. By Lemma 7.4 with T = F̃(E), there is a one-to-
one correspondence between degree k derivations θ : F̃(E) → M and degree 0
derivations θ : F̃(E)→ s−kM, given by θ :=↑−kθ . Likewise, there is a one-to-one
correspondence between degree k modular module morphisms ϑ : E → M and
degree 0 modular module morphisms ϑ : E → s−kM, given by ϑ :=↑ −kϑ . It is
clear that, if ϑ = θ |E , then ϑ = θ |E . We may therefore replace, in Theorem 7.1, θ
by θ , ϑ by ϑ and M by s−kM and thus assume that k = 0.
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By Lemma 7.4 again, there is a one-to-one correspondence between degree 0
derivations θ : F̃(E)→ M and morphism of modular operads

Θ := (1F̃(E), θ
) : F̃(E)→ F̃(E)⊕M. (7.14)

By the freeness of F̃(E), such a morphism is determined by its restriction

Θ|E = (ι, θ |E) : E → F̃(E)⊕M

which is in turn determined by the restriction θ |E : E → M. It is therefore enough
to show that every modular module morphism ϑ : E → M extends to a modular
operad morphism of as in (7.14), determining a derivation that restricts to it.

Let Θ : F̃(E) → F̃(E) ⊕ M be the unique extension of the modular module
morphism (ι, ϑ) : E → F̃(E) ⊕ M. This extension is necessary of the form Θ =
(Φ, θ) for some Φ : F̃(E)→ F̃(E). We must show that Φ = 1F̃(E).

The projection pr1 : F̃(E)⊕M → F̃(E) to the first summand is clearly an operad
morphism, and so is the compositionΦ = pr1 ◦Θ . By construction,Φ|E = ι. Since
the identity 1F̃(E) also restricts to ι, Φ must equal 1F̃(E) by the uniqueness of the
extension. The equality θ |E = ϑ is obvious.

7.2 Feynman Transform

In this section we define the cobar construction for modular (co)operads, which
is called in this context the Feynman transform. To understand the idea of this
construction better, we recall very briefly the cobar construction for the classical
non-counital coassociative coalgebras.

If C is such a coalgebra with the comultiplicationΔ : C → C⊗C, then its cobar
construction Ω(C) = (T(↑ C), ∂) is the tensor algebra T(↑ C) on the suspension
of C, with the differential that is the unique extension of the linear degree+1 map

(↑⊗ ↑) ◦Δ◦ ↓: ↑C →↑C⊗ ↑C

into a degree +1 derivation. Such an unique extension exists since T(↑ C) is the
free associative algebra generated by ↑C. A straightforward calculation shows that
the coassociativity of Δ implies ∂2 = 0. The cobar construction is therefore a dg-
associative algebra.

If C is a dg-coalgebra with a differential dC , then ↑ dC ↓ : ↑ C →↑ C extends
into a degree +1 derivation d : T(↑C)→ T(↑C). One easily proves that

∂2 = d2 = d∂ + ∂d = 0. (7.15)

There is a modification of the above construction that avoids the use of the
suspension. In Example 6.30 we recalled anti-associative algebras; let us denote
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by T̃(C) the free anti-associative algebra generated by a graded vector space C and
ι : C ↪→ T̃(C) the canonical inclusion. The algebra T̃(C) can be realized as the
tensor algebra T(C) with suitably redefined degrees and the tensor product taken
with an appropriate sign; we leave the details to the interested reader.

If C = (C,Δ) is a coalgebra as above, we define its “odd” cobar construction
Ω̃(C) as the couple (̃T(C), ∂), where ∂ is the unique degree+1 derivation extending
the degree +1 map

C
Δ−→ C ⊗ C

ι⊗ι−→ T̃(C)⊗ T̃(C)
�−→ T̃(C).

We leave as an exercise to prove that ∂2 = 0, so Ω̃(C) is a dg-anti-associative
algebra. As before, a differential dC of C induces a second differential d : Ω̃(C)→
Ω̃(C) such that (7.15) is satisfied.

Notice that if A is an dg-associative algebra, then its desuspension ↓ A has a
natural structure of an anti-associative algebra. Likewise, suspensions of dg-anti-
associative algebras are ordinary associative algebras. This correspondence defines
an equivalence between the category of dg-associative algebras and the category
of dg-anti-associative algebras. Since the ordinary and the odd cobar constructions
correspond to each other under this correspondence, both constructions are essen-
tially equivalent.

As the classical cobar construction recalled above acts on coassociative coalge-
bras, the Feynman transform acts on modular cooperads. The underlying objects of
modular cooperads are modular comodules:

Definition 7.5 A modular comodule is a contravariant functor

E : Cor× A→ Chain.

Definition 7.6 Each modular comodule E has its associated modular module

E̊ : Cor× A→ Chain

with E̊(S; g) := E(S; g) and E̊(σ ) : E̊(S; g) → E̊(T ; g) defined, for an
isomorphism σ : S ∼=−→ T , by E̊(σ ) := E(σ−1).

The assignment E 
→ E̊ defines an isomorphism between the category of
modular comodules and the category of modular modules.

Definition 7.7 A modular cooperad with step s consists of a modular comodule

C = {C (S; g) ∈ Chain; (S; g) ∈ Cor× A
}
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together with degree 0 morphisms (cocompositions)

a

S1
◦bS2

= a

S1; g1
◦bS2;g2

: C (S1�S2; g)→ C (S1�{a}; g1)⊗C (S2�{b}; g2) (7.16)

defined for arbitrary disjoint finite sets S1, S2, symbols a, b, and genera g1, g2 ∈ A
such that g1 + g2 = g. There are, moreover, degree 0 morphisms (cocontractions)

◦uvg = ◦vug = ◦uv : C (S; g + s)→ C (S � {u, v}; g) (7.17)

given for any finite set S, genus g ∈ A, and symbols u, v. These data must satisfy
the following axioms:

(i) For arbitrary isomorphisms ρ : S1 � {a} → T1 and σ : S2 � {b} → T2 of finite
sets and genera g1, g2 ∈ A, one has the equality

(
C (ρ)⊗ C (σ )

)
ρ(a)

T1 \ ρ(a)◦
ρ(b)
T2\σ(a) = a

S1
◦bS2

C (ρ|S1 � σ |S2)

of maps

C
(
T1 � T2 \ {ρ(a), σ (b)}; g1 + g2

)→ C
(
S1 � {a}; g1

)⊗ C
(
S2 � {b}; g2

)
.

(ii) For each isomorphism ρ : S � {u, v} → T of finite sets and a genus g ∈ A,
one has the equality

C (ρ) ◦ρ(a)ρ(b) = ◦ab C (ρ|S) (7.18)

of maps C
(
T \ {ρ(u), ρ(v)}; g + s

)→ C
(
S � {u, v}; g).

(iii) For S1, S2, a, b and g1, g2 as in (7.16), one has the equality

τ
S2
b
◦S1
a = a

S1
◦bS2

(7.19)

of maps C
(
S1 � S2; g1 + g2

)→ C (S1 � {a}; g1)⊗ C (S2 � {b}; g2).
(iv) For mutually disjoint sets S1, S2, S3, symbols a, b, c, d and genera g1, g2, g3 ∈

A, one has the equality

(1⊗ c

S2 � {b}◦
d
S3
)

a

S1
◦bS2�S3

= (
a

S1
◦bS2�{c}⊗ 1) c

S1 � S2
◦dS3

(7.20)

of maps from C
(
S1 � S2 � S3; g1+g2+g3

)
to the space

C
(
S1 � {a}; g1

)⊗ C
(
S2 � {b, c}; g2

)⊗ C
(
S3 � {d}; g3

)
.
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(v) For a finite set S, symbols a, b, c, d and a genus g ∈ A one has the equality

◦ab ◦cd = ◦cd ◦ab (7.21)

of maps C (S; g + 2s)→ C
(
S � {a, b, c, d}; g).

(vi) For finite sets S1, S2, symbols a, b, c, d and genera g1, g2 ∈ A, one has the
equality

a

S1 � {c}◦
b
S2�{d} ◦cd = c

S1 � {a}◦
d
S2�{b} ◦ab (7.22)

of maps C (S1 � S2; g1 + g2 + s)→ C
(
S1 � {a, c}; g1

)⊗C
(
S2 � {b, d}; g2

)
.

(vii) For finite sets S1, S2, symbols a, b, u, v, and genera g1, g2 ∈ A, one has the
equality

(◦uv ⊗ 1) a

S1
◦bS2

= a

S1 � {u, v}◦
b
S2
◦uv (7.23)

of maps C (S1�S2; g1+g2+s)→ C
(
S1�{a, u, v}; g1

)⊗C
(
S2�{b}; g2

)
.

Convention From this moment on we will assume that the semigroup A is such
that the set

{(g1, g2) ∈ A×2 | g = g1 + g2} (7.24)

is finite for each g ∈ A.
The finiteness (7.24) guarantees that some constructions or formulas work

without the necessity to pass to completions. Denote, for instance, for a finite set S,

C (S) :=
⊕
g∈A

C (S; g).

It is a bigraded vector space, with the first grading given by the grading of the
graded vector spaces C (S; g), and the second grading given by the genus. Thanks
to the finiteness of the sets (7.24), the maps (7.16) assemble into a bidegree-(0, 0)
map C (S1 � S2)→ C (S1 � {a})⊗C (S2 � {b}). Notice that the finiteness is always
fulfilled when A = N, which is the case of the most important applications.

Condition (7.24) could be replaced by a weaker one. We may, e.g. assume that
for each S1, S2, and g as in (7.16) is the set

{
(g1, g2) ∈ A×2, g1 + g2 = g

∣∣ a

S1; g1
◦bS2;g2

�= 0
}

finite, and make a similar assumption also about the cocontractions ◦uvg . In all
applications we know (7.24) is however satisfied.
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The main source of examples of modular cooperads are the piecewise linear duals
of modular operads satisfying suitable finiteness conditions.

Definition 7.8 A Z-graded vector space V is of finite type if each component V k ,
k ∈ Z, is finite-dimensional. It is finite-dimensional if the associated total space

V =
⊕
k∈Z

V k

is finite-dimensional. A modular operad M is of finite type (resp. finite-
dimensional) if the graded vector space M (S; g) is such for each (S, g) ∈ Cor×A.

Proposition 7.1 LetM be a modular operad of finite type. For k1, k2 ∈ Z, g1, g2 ∈
A and S1, S2 ∈ Cor denote by

g1,k1
a◦g2,k2

b :M (
S1 � {a}; g1

)k1 ⊗M
(
S2 � {b}; g2

)k2 →M (S1 � S2; g1 + g2)
k1+k2

the restriction of the structure operation (6.51) to the indicated components. Assume
that the set

{
(k1, k2) ∈ Z×2, k1 + k2 = k | k1,g1

a◦k2,g2
b �= 0

}
(7.25)

is finite for each S1, S2, g1, g2 ∈ A and k ∈ Z. Then the modular module

M # = {M (S; g)# ∈ Chain
∣∣ (S, g) ∈ Cor× A

}

of piecewise linear duals has a natural modular cooperad structure induced from
the modular operad structure ofM .

Remark 7.3 The finiteness of (7.25) is always satisfied when M is non-negatively
or non-positively graded, or finite-dimensional,

Proof (of Proposition 7.1) To shorten the notation, we denote for k ∈ Z, g ∈ A
and S ∈ Cor by C (S; g)k the linear dual

(
M (S; g)k)# of the degree-k graded

component of M (S; g). It is clear that the collection

M # = C = {C (S; g) ∈ Chain
∣∣ (S, g) ∈ Cor× A

}

with

C (S; g) =M (S; g)# =
⊕
k∈Z

C (S; g)k
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and the induced differential d#
M is a modular comodule. Consider the linear dual

(
g1,k1

a◦g2,k2
b )# : C (S1 � S2; g)k −→

(
M
(
S1 � {a}; g1

)k1 ⊗M
(
S2 � {b}; g2

)k2
)#

of the restrictions g1,k1
a◦g2,k2

b . Since M is of finite type by assumption, the canonical
inclusion

g1,k1 ιg2,k2 : C (S1 � {a}; g1)
k1 ⊗ C (S1 � {b}; g2)

k2 ↪→
↪→ (

M
(
S1 � {a}; g1

)k1 ⊗M
(
S2 � {b}; g2

)k2
)#

is an isomorphism, so one can define a map

(
a

S1; g1
◦bS2;g2

)k : C (S1 � S2; g)k →
∏

k1+k2=k
C
(
S1 � {a}; g1

)k1 ⊗ C
(
S2 � {b}; g2

)k2

as the product

( a

S1; g1
◦bS2;g2

)k :=
∏

k1+k2=k
(g1,k1 ιg2,k2)−1(

g1,k1
a◦g2,k2

b )#. (7.26)

By the finiteness of (7.25), the product in (7.26) has only finitely many nontrivial
components, so ( a

S1; g1
◦bS2;g2

)k is in fact a map

(
a

S1; g1
◦bS2;g2

)k : C (S1 � S2; g)k →
⊕

k1+k2=k
C
(
S1 � {a}; g1

)k1 ⊗ C
(
S2 � {b}; g2

)k2

which is the kth component of a degree-0 map

a

S1; g1
◦bS2;g2

: C (S1 � S2; g)→ C
(
S1 � {a}; g1

)⊗ C
(
S2 � {b}; g2

)
. (7.27)

The operations ◦uvg =: C (S; g + s) → C (S � {u, v}; g) are just simple-minded
duals of the contractions (6.52), the dualization here presents no problem. Since the
axioms of modular cooperads are the exact formal duals of the axioms of modular
operads, the modular comodule M # = C with the structure operations (7.27) and
◦uvg := ◦uv# form a modular cooperad.
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Let us try to define the Feynman transform of a modular cooperad by mimicking
the definition of the cobar construction of a coassociative coalgebra recalled at the
beginning of this section. One is tempted to take the free modular operad F(↑ C )

on the component-wise suspension of a modular cooperad C and equip it with a
differential that extends the structure operations of C into a degree +1 derivation
of F(↑ C ). Quite surprisingly, this would not work. The reason is that, while
the cocompositions (7.16) define a degree +1 operations on this suspensions, the
cocontractions (7.17) induce operations of degree 0! Fortunately, the analog of the
alternative approach to the definition of the cobar construction using odd modular
operads works.

In the following definition, F̃(C̊ ) is the free odd modular operad generated by the
modular module C̊ associated with the underlying modular comodule of C in the
correspondence of Definition 7.6, and ι : C̊ → F̃(C̊ ) the canonical inclusion. Recall
that each derivation θ : F̃(C̊ ) → F̃(C̊ ) is uniquely determined by its restriction
θι : C̊ → F̃(C̊ ) along the natural inclusion ι : C̊ → F̃(C̊ ) by Theorem 7.1.

Definition 7.9 Let C be a modular cooperad with the structure operations (7.16)
and (7.17), and the internal differential dC . Let ∂, d : F̃(C̊ ) → F̃(C̊ ) be degree +1
derivations defined, for x ∈ C (S; g) = C̊ (S; g), by the finite sum2

∂ι(x) :=
∑

g′+s=g
•uv ι◦uvg′ (x)+

1

2

∑
A�B=S

∑
g1+g2=g

a•b(ι⊗ ι)
a

A; g1
◦bB;g2

(x) (7.28)

where a•b and •uv are the degree +1 structure operations of F̃(C̊ ), and u, v, a, b

are independent symbols, respectively, by

dι(x) := ιdC (x).

The odd dg-modular operad F (C ) := (̃
F(C̊ ), ∂ + d

)
is called the Feynman

transform of the modular cooperad C . If we need to distinguish between ∂ and d ,
we will call ∂ the external and d the internal differential.

Remark 7.4 Let us choose an element s ∈ S. It is clear that the rightmost term
of (7.28) splits into the sum of two terms:

∑
A�B=S
s∈A

∑
g1+g2=g

a•b(ι⊗ ι)
a

A; g1
◦bB;g2

(x)+
∑

A�B=S
s∈B

∑
g1+g2=g

a•b(ι⊗ ι)
a

A; g1
◦bB;g2

(x).

2In the first term in the right-hand side, the summation is not performed over the repeated indexes.
All summations are finite by (7.24).
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It moreover follows from the odd version of the symmetry (6.54) and from (7.19)
that both terms of the above display are equal. Formula (7.28) can therefore be
rewritten as

∂ι(x) :=
∑

g′+s=g
•uv ι ◦uvg′ (x)+

∑
A�B=S
s∈A

∑
g1+g2=g

a•b(ι⊗ ι)
a

A; g1
◦bB;g2

(x)

which does not use the rational one-half.

Theorem 7.2 The derivations d and ∂ satisfy ∂2 = d2 = ∂d + d∂ = 0. In
particular, ∂ + d is a differential, i.e. (∂ + d)2 = 0.

Proof (of Proposition 7.1) It follows from Lemma 7.1 that both ∂2, d2 and ∂d+d∂

are degree +2 derivations. By Theorem 7.1, it suffices to verify the equalities d2 =
0, ∂d + d∂ = 0 and ∂2 = 0 on the generating space C = Im(ι) ⊂ F̃(C̊ ). For each
finite set S, genus g and x ∈ C (S; g), one has by definition

d2ι(x) = dι(dC x) = ι(d2
C x) = 0,

which proves that d2 = 0. For the same x one has

d •uv ι ◦uvg′ (x) = − •uv dι ◦uvg′ (x) = − •uv ιdC ◦uvg′ (x) = − •uv ι ◦uvg′ (dC x)

and

d a•b(ι⊗ ι)
a

A; g1
◦bB;g2

(x) = − a•b(dι⊗ ι+ ι⊗ dι)
a

A; g1
◦bB;g2

(x)

= − a•b(ι⊗ ι) a

A; g1
◦bB;g2

(dC x).

This shows that d∂ι(x) = −∂ι(dC x) for each x ∈ C (S; g), so indeed ∂d + d∂ = 0.
Let us finally prove that ∂2 = 0. To save the space, we will omit the summations

over the genera whose presence will always be clear from the context. For x ∈
C (S; g) as above one has

∂2ι(x) = ∂
(
•uv ι ◦uv +1

2

∑
A�B=S

a•b(ι⊗ ι)
a

A
◦bB
)
(x)

= − •uv ∂ι ◦uv (x)− 1

2

∑
A�B=S

a•b(∂ ⊗ 1+ 1⊗ ∂)(ι⊗ ι)
a

A
◦bB(x)

= −
(

1 + 1

2
2 + 1

2
3 + 1

2
4 + 1

2
5 + 1

2
6

)
(x) = 0,
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where

1 = •ab •uvι ◦uv ◦ab,

2 =
∑

A�B=S�{u,v}
•uv a•b(ι⊗ ι)

a

A
◦bB◦uv,

3 =
∑

S1�S2=S
a•b(•uv ⊗ 1)(ι⊗ ι)(◦uv ⊗ 1) a

S1
◦bS2

,

4 =
∑

A�B=S

∑
A1�A2=A�{a}

a•b( x•y ⊗1)(ι⊗ ι⊗ ι)( x

A1
◦yA2

⊗ 1) a

A
◦bB,

5 =
∑

S1�S2=S
a•b(1⊗ •uv)(ι⊗ ι)(1⊗ ◦uv) a

S1
◦bS2

, and

6 =
∑

A�B=S

∑
B1�B2=B�{b}

a•b(1⊗ x•y)(ι⊗ ι⊗ ι)(1⊗ x

B1
◦yB2

)
a

A
◦bB .

with formal variables a, b, u, v, x, y.
Let us start by analyzing 1 . Using the commutativity (7.21) in C and the anti-

commutativity (6.81) in F̃(C̊ ), we see that

•ab •uv ι ◦uv ◦ab = − •uv •abι ◦ab ◦uv.

Since a, b, u, v are formal independent variables, we may apply the substitution
a ↔ u, b↔ v to the expression in the right-hand side and obtain

•ab •uv ι ◦uv ◦ab = − •ab •uvι ◦uv ◦ab

which shows that 1 = 0.
More formally, define the automorphism ρ : S � {a, b, u, v} → S � {a, b, u, v}

by

ρ|S := 1, ρ(a) := u and ρ(b) := v.

Since C̊ is a modular module, C̊ (ρ)C̊ (ρ−1) = C̊ (1) = 1S�{a,b,u,v}, therefore

ι = F̃(C̊ )(ρ)ιC̊ (ρ−1) = F̃(C̊ )(ρ)ιC (ρ),

one thus has

•uv •ab ι ◦ab ◦uv = •uv •ab F̃(C̊ )(ρ)ιC (ρ) ◦ab ◦uv.
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The repeated use of (6.53) and (7.18) gives

•uv •abF̃(C̊ )(ρ)ιC (ρ) ◦ab ◦uv

= •uvF̃(C̊ )
(
ρ|S�{a,b}

) •uv ι ◦uv C̊ (ρ|S�{a,b})◦uv
= F̃(C̊ )

(
ρ|S
) •ab •uvι ◦uv ◦abC̊ (ρ|S) = •ab •uv ι ◦uv ◦ab,

so indeed

•uv •ab ι ◦ab ◦uv = •ab •uv ι ◦uv ◦ab.

Let us attend to 2 . There are four possibilities.

1. Case u, v ∈ A. Then S = S1 � S2, A = S1 � {u, v} and B = S2 for some finite
sets S1, S2, and 2 equals

∑
S=S1�S2

•uv a•b(ι⊗ ι)
a

S1 � {u, v}◦
b
S2
◦uv .

We rewrite this expression, using (6.83) and (7.23), as

−
∑

S=S1�S2

a•b (◦uv ⊗ 1)(ι⊗ ι)(◦uv ⊗ 1) a

S1
◦bS2

,

which is 3 with the minus sign.
2. Case u, v ∈ B. The mirror image of the previous one. By precisely the same

arguments we obtain 5 with the minus sign.
3. Case u ∈ A, v ∈ B. There clearly exist finite sets S1, S2 such that A = S1 � {u}

and B = S2 � {v}, so that 2 can be rewritten as

∑
S=S1�S2

•uv a•b(ι⊗ ι)
a

S1 � {u}◦
b
S2�{v}◦uv (7.29)

which, by (6.82) and (7.22), equals

−
∑

S=S1�S2

•ab u•v(ι⊗ ι)
u

S1 � {a}◦
v
S2�{b} ◦ab .
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The substitution a ↔ x, b↔ y converts the above expression to

−
∑

S=S1�S2

•uv a•b(ι⊗ ι)
a

S1 � {u}◦
b
S2�{v}◦uv

which is (7.29) with the minus sign, cf. the discussion of 1 .
4. Case v ∈ A, u ∈ B. The mirror image of the previous case.

Let us move to 4 . There are two possibilities.

i. Case a ∈ A2. Then there exist finite sets S1, S2, S3 such that A1 = S1, A2 =
S2 � {a} and B = S3. One then rewrites 4 as

∑
S1�S2�S3=S

a•b( x•y ⊗1)(ι⊗ ι⊗ ι)(
x

S1
◦yS2�{a} ⊗ 1) a

S1 � S2
◦bS3

,

which, by the anti-associativity (6.80) and the coassociativity (7.20), equals

−
∑

S1�S2�S3=S
x•y(1⊗ a•b)(ι⊗ ι⊗ ι)(1⊗ a

S2 � {y}◦
b
S3
) x

S1
◦yS2�S3

. (7.30)

ii. Case a ∈ A1. There exist finite sets S1, S2, S3 such that A1 = S1�{a}, A2 = S2
and B = S3. Expression 4 then equals

∑
S1�S2�S3=S

a•b( x•y ⊗1)(ι⊗ ι⊗ ι)
(

x

S1 � {a}◦
y
S2
⊗ 1
)

a

S1 � S2
◦bS3

,

which we rewrite, using the symmetries (6.54) and (7.19), as

∑
S1�S2�S3=S

a•b( y•x ⊗1)(ι⊗ ι⊗ ι)
(

y

S2
◦xS1�{a} ⊗ 1

)
a

S1 � S2
◦bS3

.

The anti-associativity (6.80) and the coassociativity (7.20) give

−
∑

S1�S2�S3=S
y•x(1⊗ a•b)(ι⊗ ι⊗ ι)

(
1⊗ a

S2 � {x}◦
b
S3

)
y

S1
◦xS2�S3

,

which, after the substitution x ↔ y, becomes (7.30). We therefore see that

4 = −2
∑

S1�S2�S3=S
x•y(1⊗ a•b)(ι⊗ ι⊗ ι)

(
1⊗ a

S2 � {y}◦
b
S3

)
x

S1
◦yS2�S3

.
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The summation in 6 splits into two cases, either b ∈ B1 or b ∈ B2. A
similar analysis as the one applied to 4 shows that

6 = 2
∑

S1�S2�S3=S
x•y(1⊗ a•b)(ι⊗ ι⊗ ι)

(
1⊗ a

S2 � {y}◦
b
S3

)
x

S1
◦yS2�S3

,

which is 4 with the opposite sign. This proves that ∂2 = 0

Remark 7.5 Notice that the calculations in the proof of Theorem 7.2 are extremely
sign-sensitive so that, e.g. the required equality ∂2 = 0 in fact determines the signs
in (6.80)–(6.83). So, even if we do not know a priory what odd modular operads are,
the proof would lead us to their definition.

Let T = (T , dT ) be an odd modular dg-operad with structure operations a•b
and •uv , and C a modular cooperad with structure operations (7.16) and (7.17). The
following proposition characterizes morphisms α : F (C ) → T . Taking as T the
odd endomorphism operad EndV of Example 6.31, we get a description of algebras
over the Feynman transform, see also [1].

Proposition 7.2 A morphisms α : F (C ) → T of odd modular dg-operads is the
same as a family

A = {A(S; g) : C (S; g)→ T (S; g) ∣∣ (S, g) ∈ Cor× A
}

(7.31)

of degree 0 linear maps such that

A(T ; g) ◦ C (ρ−1) = T (ρ) ◦ A(S; g) (7.32)

for any g ∈ A and a bijection ρ : S ∼=−→ T , and such that the equality

dT A(S; g) = A(S; g)dC +
∑

g′+s=g
•uvA(S � {u, v}; g′)◦uvg (7.33)

+ 1

2

∑
S1�S2=S

∑
g1+g2=g

a•b
(
A(S1 � {a}; g1)⊗A(S2 � {b}; g2)

)
a

S1; g1
◦bS2;g2

of maps C (S; g)→ T (S; g) holds for all (S, g) ∈ Cor× A.

Proof (of Proposition 7.1) By definition, a morphism of odd dg-modular operads

α : F (C ) = (̃F(C̊ ), ∂ + d
)→ T = (T , dT ) (7.34)
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is a morphism F̃(C̊ ) → T of odd modular operads commuting with the differen-
tials. Since F̃(C̊ ) is free, such a morphism is determined by its restriction to the
module of generators, which is a morphism A : C̊ → T of modular modules. By
the definition of the modular module C̊ associated with the module comodule C , A
is precisely the family (7.31) satisfying (7.32).

It remains to express the condition that (7.34) commutes with the differentials,
i.e. that

dT α(S; g) = α(S; g)(∂ + d) (7.35)

for each S ∈ Cor and g ∈ A, in terms of the family A. Since a composition of
a derivation with a morphism is again a derivation, it is enough by Theorem 7.1 to
verify (7.35) on the generators C . Let us apply α(S; g) to the first term in the right-
hand side of (7.28) defining ∂ on C (S; g). Using the fact that α extends A, we see
that

α(S; g)
∑

g′+s=g
•uv ι◦uvg′ =

∑
g′+s=g

•uvα(S � {uv}; g′)ι◦uvg′ =
∑

g′+s=g
•uv A(S � {uv}; g′)◦uvg′

Applying α(S; g) to the second term in the right-hand side of (7.28) gives

α(S; g)
∑

S1�S2=S

∑
g1+g2=g

a•b(ι⊗ ι)
a

S1; g1
◦bS2;g2

=
∑

S1�S2=S

∑
g1+g2=g

a•b
(
α(S1 � {a}; g1)⊗ α(S2 � {b}; g2)

)
(ι⊗ ι)

a

S1; g1
◦bS2;g2

=
∑

S1�S2=S

∑
g1+g2=g

a•b ◦
(
A(S1 � {a}; g1)⊗A(S2 � {b}; g2)

) ◦ a

S1; g1
◦bS2;g2

.

Finally, α(S; g)d restricted to C̊ clearly equals A(S; g)dC , so the right-hand side
of (7.33) equals α(S; g)(∂ + d) restricted to C̊ . The fact that dT A(S; g) is
dT α(S; g) restricted to C̊ (S; g) finishes the proof.

Remark 7.6 Theorem 8.2 below will use a skeletal version of Proposition 7.2. As
before, [n] := {1, . . . , n} for n ∈ N, and denote C (n; g) := C

([n]; g) and
T (n; g) := T

([n]; g), g ∈ A. Each T (n; g) is a natural left Σn-module, while
each C (n; g) is a natural right Σn-module. We claim that the family (7.31) is
determined by the sequence

Ask =
{
A(n; g) : C (n; g)→ T (n; g) | (S, g) ∈ N× A

}
(7.36)
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of linear degree 0 maps such that

A(n; g) = T (σ ) ◦ A(n; g) ◦ C (σ ) (7.37)

for each n ∈ N, g ∈ A and a permutation σ : [n] ∼=−→[n] ∈ Σn. In elements,
Eq. (7.37) means that

A(n; g)(c) = σ A(n; g)(cσ )

for each c ∈ C (n; g). Let us verify this statement.
Each family (7.31) determines the skeletal family (7.36) by restricting to finite

sets of the form [n], n ∈ N. Condition (7.37) for this restricted family follows
from (7.32) taken with S = T = [n] and ρ = σ : [n] ∼=−→[n] ∈ Σn.

On the other hand, suppose that we are given a skeletal family Ask as in (7.36).
For a finite set S choose an isomorphism ρ : [n] ∼=−→ S and define A(S; g) in (7.31)
by

A(S; g) := T (ρ) ◦ A(n; g) ◦ C (ρ). (7.38)

It follows from the equivariance (7.37) that A(S; g) does not depend on the concrete
choice of ρ and that the family defined this way satisfies (7.32). The correspondence
A↔ Ask described above is clearly one-to-one.

Equation (7.33) with S = [n] reads

dT A(n; g) = A(n; g)dC +
∑

g′+s=g
•uvA

([n] � {u, v}; g′)◦uvg′
+1

2

∑
S1�S2=[n]

∑
g1+g2=g

a•b
(
A(S1 � {a}; g1)⊗A(S2 � {b}; g2)

)
a

S1; g1
◦bS2;g2

Expressing A
([n] � {u, v}; g′), A(S1 � {a}; g1

)
and A

(
S2 � {b}; g2

)
via the skeletal

family Ask using (7.38) converts this equation into

dT A(n;g) = A(n; g)dC +
∑

g′+s=g
•uvT (θ)A(n+ 2; g′)C (θ)◦uv

g′ (7.39)

+1

2

∑
S1�S2=[n]

∑
g1+g2=g

a•b(θ1 ⊗ θ2)
(
A(n1+1; g1)⊗A(n2+1; g2)

)
(θ1 ⊗ θ2)

a

S1; g1
◦bS2;g2

for chosen isomorphisms θ : [n + 2] ∼=−→[n] � {u, v}, θ1 : [n1 + 1] ∼=−→ S1 � {a} and
θ2 : [n2 + 1] ∼=−→ S2 � {b}. To fit the above formula into a display of finite width, we
wrote in the second line

(θ1 ⊗ θ2)
(
A(n1 + 1; g1)⊗ A(n2 + 1; g2)

)
(θ1 ⊗ θ2)
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instead of

(
T (θ1)⊗T (θ2)

)(
A(n1 + 1; g1)⊗ A(n2 + 1; g2)

)(
C (θ1)⊗ C (θ2)

)
.
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8Structures Relevant to Physics

The last chapter the book is devoted to the mathematical interpretation of physical
objects discussed in Part I. The standard references are [1, 4, 9] and [12].

8.1 BV Algebras and theMaster Equation

Generalizing Barannikov’s [1], we prove that an odd dg-modular operad morphism
α : F (C ) → T as in Proposition 7.2 can be, in the case when C is a component-
wise linear dual of a modular operad M of finite type as in Proposition 7.1,
conveniently described via a solution of a certain master equation in a shifted dg-
Lie algebra succinctly defined in terms of M and T . Recall that [n] for n ≥ 0
denotes the set {1, . . . , n}, with [0] interpreted as the empty set. We denote, as usual,
M (n; g) :=M

([n]; g) and T (n; g) := T
([n]; g), g ∈ A.

Definition 8.1 Let M = (M , dM ) be a dg-modular operad with structure
operations a◦b and ◦uv , and T = (T , dT ) an odd dg-modular operad with
structure operations a•b and •uv . Define

MT(n; g) := (M (n; g)⊗T (n; g))Σn

to be, for n ∈ N, g ∈ A, the space of invariants under the diagonal action of the
symmetric group Σn on the tensor product M (n; g)⊗T (n; g).

Let us introduce the following three operations. For e ∈ MT(n; g) put

d(e) := (dM ⊗ 1T (n;g) − 1M (n;g) ⊗ dT
)
(e) ∈ MT(n; g). (8.1)
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For f ∈ MT(n+ 2; g), let

Δ(f ) := ( ◦uv ⊗ •uv
)(
M (θ)⊗T (θ)

)
(f ) ∈ MT(n; g + s) (8.2)

for an arbitrary bijection θ : [n+ 2] ∼=−→ [n] � {u, v}. Finally, for g ∈ MT(n1+1; g1)

and h ∈ MT(n2 + 1; g2), let {g, h} ∈ MT(n1 + n2; g1 + g2) be defined as

{g, h} :=
∑

S1� S2=[n1+n2]
( a◦b⊗a•b)τ

(
M (θ1)⊗T (θ1)⊗M (θ2)⊗T (θ2)

)
(g⊗h), (8.3)

where θ1 : [n1 + 1] ∼=−→ S1 � {a} and θ2 : [n2 + 1] ∼=−→ S2 � {b} are arbitrary bijec-
tions1 and τ exchanges the two middle factors. We complete the definition by setting
Δ(f ) := 0 for f ∈ MT(n; g), n = 0, 1, and {g, h} := 0 if g ∈ MT(0; g1) or
h ∈ MT(0; g2).

Lemma 8.1 The above operations are well defined and do not depend on the
choices of θ in (8.2) and θ1, θ2 in (8.3).

Proof. It follows from theΣn-equivariance of the differentials dT and dM that d(e)
in (8.1) is Σn-stable, too, i.e. indeed d(e) ∈ MT(n; g). Let us prove that Δ(f ) as
defined in (8.2) does not depend on θ .

Assume that θ ′ : [n+ 2] → [n] � {u, v} is another bijection. Then

(
M (θ ′)⊗T (θ ′)

)
(f ) = (M (θ)⊗T (θ)

)(
M (θ−1θ ′)⊗T (θ−1θ ′)

)
(f )

= (M (θ)⊗T (θ)
)
(f ),

since θ−1θ ′ ∈ Σn+2 and f ∈M ([n+ 2]; g)⊗T ([n+ 2]; g) is Σn+2-invariant by
assumption.

Let us prove that Δ(f ) ∈ M ([n]; g + s) ⊗ T ([n]; g + s) is Σn-invariant.
Invoking (6.53) resp. its obvious version for odd modular operads, we get for
σ ∈ Σn

σΔ(f ) = (M (σ )⊗T (σ )
)
(◦uv ⊗ •uv)

(
M (θ)⊗T (θ)

)
(f )

= (◦uv ⊗ •uv)
(
M (σ̃ θ)⊗T (σ̃ θ)

)
(f ),

where σ̃ : [n] � {u, v} ∼=−→ [n] � {u, v} fixes u, v and restricts to σ on [n]. Since σ̃ θ
is just another isomorphism between [n+ 2] and [n] � {u, v}, σΔ(f ) equals Δ(f )
by the previous paragraph.

The independence of {g, h} in (8.3) on θ1 and θ2 is proved precisely as the
independence of Δ(f ) on θ . Let us show that {g, h} is Σn1+n2 -invariant. Since

1Notice that necessarily |S1| = n1 and |S2| = n2.
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[n1 + n2] = S1 � S2, a permutation σ ∈ Σn1+n2 is the same as an isomorphism
S1 � S2

∼=−→ S1 � S2. Using (6.53) resp. its odd version we see that, for such a σ ,

(
M (σ )⊗T (σ )

)(
a◦b⊗ a•b

) = ( a◦b⊗ a•b
)(
M (σ̃1)⊗M (σ̃2)⊗T (σ̃1)⊗T (σ̃2)

)
,

where σ̃1 : S1 � {a}
∼=−→ σ(S1) � {a} is the isomorphism that restricts to σ on S1, and

σ̃2 : S2 � {b}
∼=−→ σ(S2) � {b} is defined analogously. The above equality implies that

σ {g, h}
=
∑

S1� S2=[n1+n2]

(
a◦b⊗ a•b

)
τ
(
M (σ̃1θ1)⊗T (σ̃1θ1)⊗M (σ̃2θ2)⊗T (σ̃2θ2)

)
(g ⊗ h).

Replacing the summation over S1, S2 by the summation over σ(S1), σ (S2), and
the corresponding isomorphisms θ1, θ2 by σ̃1θ1, σ̃1θ2 we conclude that the last
expression equals {g, h} as desired.

Let us introduce the total graded vector space

MT :=
∏

n≥0, g∈A
MT(n; g). (8.4)

The operations defined in (8.1)–(8.3) act on sequences in MT , defining degree +1
operations d,Δ : MT → MT and {−,−} : MT ⊗MT → MT.

Theorem 8.1 The object MT = (
MT, d,Δ, {−,−}) is a desuspended bi-

differential graded Lie algebra, i.e. the operations d : MT → MT, Δ : MT → MT
and {−,−} : MT ⊗MT → MT have degree +1, {−,−} is graded symmetric and
the following axioms are fulfilled:2

d2 = Δd + dΔ = Δ2 = 0, (8.5)

d{f, g} + {df, g} + (−1)|f |{f, dg} = 0, (8.6)

Δ{f, g} + {Δ(f ), g} + (−1)|f |
{
f,Δ(g)

} = 0, and (8.7)

(−1)|f ||h|
{{f, g}, h}+ (−1)|h||g|

{{h, f }, g}+ (−1)|g||f |
{{g, h}, f } = 0 (8.8)

for arbitrary homogeneous f, g, h ∈ MT.

2Equivalently, the operations d,Δ and {−,−} induce on the suspension ↑ MT a dg-Lie algebra
structure.
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Proof. The vanishing of d2 is obvious, and also the equation Δd + dΔ = 0
readily follows from the fact that the differentials dM resp. dT commute with the
contractions ◦uv resp. •uv . Let us prove Δ2 = 0.

It is easy to verify that for f ∈ MT(n; g),

Δ2(f ) = ( ◦ab ◦cd ⊗ •ab •cd
)(
M (θ)⊗T (θ)

)
(f ), (8.9)

where θ : [n] ∼=−→[n − 4] � {a, b, c, d} is an arbitrary bijection.3 Now consider the
isomorphism

σ : [n− 4] � {a, b, c, d} ∼=−→[n− 4] � {a, b, c, d}

with

σ(a) := c, σ (b) := d, σ (c) := a and σ(d) := b

that restricts to the identity on [n−4]. Since σθ is just another isomorphism between
[n] and [n− 4] � {a, b, c, d}, Δ2(f ) in (8.9) equals

( ◦ab ◦cd ⊗ •ab •cd
)(
M (σθ)⊗M (σθ)

)
(f ).

By the equivariance of the contractions, the expression in the above display equals

( ◦cd ◦ab ⊗ •cd •ab
)(
M (θ)⊗M (θ)

)
(f )

while, by the commutativity (6.56) resp. the anti-commutativity (6.81), this equals

−( ◦ab ◦cd ⊗ •ab •cd
)(
M (θ)⊗M (θ)

)
(f ),

which we recognize as the right-hand side of (8.9) with the minus sign. We conclude
that Δ2(f ) = 0. This finishes the verification of (8.5).

Equation (8.6) follows from the fact that both differentials dM and dT are
derivations with respect to the structure operations. In the rest of this section we
shorten the formulas by denoting the actions as e.g. M (θ) resp. T (θ) by θ , the
exact meaning will always be clear from the context. For instance, formula (8.9)
will read

Δ2(f ) = ( ◦ab ◦cd ⊗ •ab •cd
)
(θ ⊗ θ)(f ).

3We tacitly assume here that n ≥ 4. When n < 4, Δ2(f ) = 0 immediately from definition. We
use this kind of assumptions throughout the rest of the proof.
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Let us verify (8.7). A tedious but straightforward calculation yields that, for f ∈
MT(n1; g1) and g ∈ MT(n2; g2),

Δ{f, g} = ( 1 + 2 2 + 3
)
(f ⊗ g), (8.10)

where

1 :=
∑

S1� S2=[n1+n2−4]

( ◦uv a◦b⊗ •uv a•b
)
τ (θ ′1 ⊗ θ ′1 ⊗ θ ′2 ⊗ θ ′2)

2 :=
∑

S1� S2=[n1+n2−4]

( ◦uv a◦b⊗ •uv a•b
)
τ (θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2)

3 :=
∑

S1� S2=[n1+n2−4]

( ◦uv a◦b⊗ •uv a•b
)
τ (θ ′′1 ⊗ θ ′′1 ⊗ θ ′′2 ⊗ θ ′′2 )

where the bijections

θ ′1 : [n1]
∼=−→ S1 � {a, u, v}, θ ′2 : [n2]

∼=−→ S2 � {b} in 1 ,

θ1 : [n1]
∼=−→ S1 � {a, u}, θ2 : [n2]

∼=−→ S2 � {b, v} in 2 , and

θ ′′1 : [n1]
∼=−→ S1 � {a}, θ ′′2 : [n2]

∼=−→ S2 � {b, u, v} in 3 ,

are arbitrary. The terms in the three sums are symbolized respectively as

a b

u

f g
v

a b

u

f g

v

a b

u

f g
v

Let us show that 2 vanishes. To this end, recall that the expression

( ◦uv a◦b⊗ •uv a•b
)
τ (θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2) (8.11)

in the sum does not depend on the particular choices of θ1 and θ2. Precomposing θ1
with the isomorphism σ1 : S1 � {a, u}

∼=−→ S1 � {a, u} that interchanges a with u and
restricts to the identity on S1, and θ2 with the similar isomorphism σ2 interchanging
b with v thus does not change the value of (8.11) which therefore equals

( ◦uv a◦b⊗ •uv a•b
)
τ (σ1θ1 ⊗ σ1θ1 ⊗ σ2θ2 ⊗ σ2θ2)

which, by the equivariance of the structure operations of M and T , equals

( ◦ab u◦v ⊗ •ab u•v
)
τ (θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2)
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which, in turn, equals

−( ◦uv a◦b⊗ •uv a•b
)
τ (θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2)

by the commutativity (6.57) resp. the anti-commutativity (6.82). Comparing it
with (8.11) we conclude that the middle term 2 of (8.10) vanishes.

A straightforward calculation shows that, for f, g as in (8.10),

{
Δ(f ), g

} = ∑
S1� S2=[n1+n2−4]

(
a◦b(◦uv⊗ 1)⊗ a•b(•uv⊗ 1)

)
τ (θ ′1 ⊗ θ ′1 ⊗ θ ′2 ⊗ θ ′2)(f ⊗ g)

for some bijections θ ′1 : [n1] → S1 � {a, u, v} and θ ′2 : [n2] → S2 � {b}. The sum in
the right-hand side however equals

∑
S1� S2=[n1+n2−4]

−( ◦uv a◦b⊗ •uv a•b
)
τ (θ ′1 ⊗ θ ′1 ⊗ θ ′2 ⊗ θ ′2)(f ⊗ g)

by the commutativity (6.58) resp. the anti-commutativity (6.83), which is 1 (f⊗g)
with the minus sign. By exactly the same method we show that

(−1)|f |
{
f,Δ(g)

} = − 3 (f ⊗ g).

This finishes the proof of (8.7).
Let us move to the proof of the Jacobi identity (8.8). It will be convenient to

introduce two auxiliary maps. For finite sets S1, S2, S3, integers p, q, r ≥ 0, genera
i, j, k ∈ A and isomorphisms

θ1 : [p]
∼=−→ S1 � {b}, θ2 : [q]

∼=−→ S2 � {a, c}, θ3 : [r]
∼=−→ S3 � {d}

the first map

A(θ1, θ2, θ3) : MT(p; i)⊗MT(q; j)⊗MT(r; k)→
→M (S1 � S2 � S3; i + j + k)⊗ T (S1 � S2 � S3; i + j + k)

is defined by

A(θ1, θ2, θ3) :=
(
c◦d( b◦a⊗1)(θ1 ⊗ θ2 ⊗ θ3)⊗ c•d( b•a⊗1)(θ1 ⊗ θ2 ⊗ θ3)

)
ψ,

where the isomorphism ψ interchanges the tensor factors of the subspace

MT(p; i)⊗MT(q; j)⊗MT(r; k)
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of the tensor product

M (p; i)⊗T (p; i)⊗M (q; j)⊗T (q; j)⊗M (r; k)⊗T (r; k)

according to the permutation

(1, 2, 3, 4, 5, 6) 
−→ (1, 4, 2, 5, 3, 6).

The second map

B(θ2, θ3, θ1) : MT(q; j)⊗MT(r; k)⊗MT(p; i)→
→M (S1 � S2 � S3; i + j + k)⊗T (S1 � S2 � S3; i + j + k)

is given by the formula

B(θ2, θ3, θ1) :=
(
a◦b( c◦d⊗1)(θ2 ⊗ θ3 ⊗ θ1)⊗ a•b( c•d⊗1)(θ2 ⊗ θ3 ⊗ θ1)

)
ψ.

The nature of A(θ1, θ2, θ3)(x ⊗ y ⊗ z) and B(θ2, θ3, θ1)(y ⊗ z⊗ x) is, for

x ∈ MT(p; i), y ∈ MT(q; j) and z ∈ MT(r; k)

symbolized respectively as

x y zb a dc y z xc d

a b

Denote by

λ : MT(p; i)⊗MT(q; j)⊗MT(r; k) ∼=−→MT(q; j)⊗MT(r; k)⊗MT(p; i) (8.12)

the isomorphism that permutes the tensor factors according to the permutation
(1, 2, 3) 
→ (2, 3, 1). The crucial property of the auxiliary maps is that

A(θ1, θ2, θ3) = −B(θ2, θ3, θ1)λ. (8.13)

Indeed, A(θ1, θ2, θ3) which, by definition, equals

(
c◦d ( a◦b⊗1)(θ1 ⊗ θ2 ⊗ θ3)⊗ c•d ( a•b⊗1)(θ1 ⊗ θ2 ⊗ θ3)

)
ψ
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can be, using (6.55) and (6.80), rewritten as

−( b◦a(1⊗ c◦d)(θ1 ⊗ θ2 ⊗ θ3)⊗ b•a(1⊗ c•d)(θ1 ⊗ θ2 ⊗ θ3)
)
ψ.

This in turn, by (6.54) and its odd version, equals

−( a◦b( c◦d ⊗1)(θ2 ⊗ θ3 ⊗ θ1)⊗ a•b( c•d ⊗1)(θ2 ⊗ θ3 ⊗ θ1)
)
ψλ,

which is −B(θ2, θ3, θ1)λ as claimed.
The terms in the Jacobi identity can be expressed via the auxiliary maps as

follows. For f ∈ MT(n1; g1), g ∈ MT(n2; g2), and h ∈ MT(n3; g3) one obtains

{{f, g}, h} =∑(
A(θ11, θ22, θ33)+ B(θ12, θ23, θ31)

)
(f ⊗ g ⊗ h),

where the summation running over all disjoint partitions

S1 � S2 � S3 = [n1 + n2 + n3 − 4]

with arbitrarily chosen isomorphism

θ11 : [n1]
∼=−→ S1 � {b}, θ22 : [n2]

∼=−→ S2 � {a, c}, θ33 : [n3]
∼=−→ S3 � {d} and

θ12 : [n1]
∼=−→ S2 � {a, c}, θ23 : [n2]

∼=−→ S3 � {d}, θ31 : [n3]
∼=−→ S1 � {b}.

Likewise, for the same f, g, and h one has

{{g, h}, f } =∑(
A(θ21, θ32, θ13)+ B(θ22, θ33, θ11)

)
(g ⊗ h⊗ f ),

with chosen isomorphism

θ21 : [n2]
∼=−→ S1 � {b}, θ32 : [n3]

∼=−→ S2 � {a, c}, θ13 : [n1]
∼=−→ S3 � {d} and

θ22 : [n2]
∼=−→ S2 � {a, c}, θ33 : [n3]

∼=−→ S3 � {d}, θ11 : [n1]
∼=−→ S1 � {b}.

Finally,

{{h, f }, g} =∑(
A(θ31, θ12, θ23)+ B(θ32, θ13, θ21)

)
(h⊗ f ⊗ g),

with isomorphism

θ31 : [n3]
∼=−→ S1 � {b}, θ12 : [n1]

∼=−→ S2 � {a, c}, θ23 : [n2]
∼=−→ S3 � {d} and

θ32 : [n3]
∼=−→ S2 � {a, c}, θ13 : [n1]

∼=−→ S3 � {d}, θ21 : [n2]
∼=−→ S1 � {b}.



8.1 BV Algebras and the Master Equation 193

The Jacobi identity (8.8) multiplied by (−1)|f ||h| is then expressed as

0 =
∑(

A(θ11, θ22, θ33)+ B(θ12, θ23, θ31)
)
(f ⊗ g ⊗ h)

+(−1)|f |(|g|+|h|)
∑(

A(θ21, θ32, θ13)+ B(θ22, θ33, θ11)
)
(g ⊗ h⊗ f )

+(−1)|h|(|f |+|g|)
∑(

A(θ31, θ12, θ23)+ B(θ32, θ13, θ21)
)
(h⊗ f ⊗ g)

or equivalently, using the isomorphism λ of (8.12) and invoking the Koszul sign
convention, as

0 =
∑(

A(θ11, θ22, θ33)+ B(θ12, θ23, θ31)
)
(f ⊗ g ⊗ h)

+
∑(

A(θ21, θ32, θ13)λ+ B(θ22, θ33, θ11)λ
)
(f ⊗ g ⊗ h) (8.14)

+
∑(

A(θ31, θ12, θ23)λ
2 + B(θ32, θ13, θ21)λ

2)(f ⊗ g ⊗ h).

Equation (8.13) readily implies that

A(θ11, θ22, θ33) = −B(θ22, θ33, θ11)λ

A(θ21, θ32, θ13)λ = −B(θ32, θ13, θ21)λ
2 and

A(θ31, θ12, θ23)λ
2 = −B(θ12, θ23, θ31)

from which (8.15) follows immediately. This finishes the proof of Theorem 8.1.

The operations introduced in Definition 8.1 can be expressed using the skeletal
versions

({M (n)}n≥0, a◦b, ◦ij
)

resp.
({T (n)}n≥0, a•b, •ij

)
of the modular operad

M resp. the odd modular operad T as follows.

Proposition 8.1 For f ∈ MT(n+ 2; g),

Δ(f ) = (◦ij ⊗ •ij )(f ) (8.15)

with arbitrary fixed i, j ∈ [n+1]. Let g ∈ MT(n1+1; g1) and h ∈ MT(n2+1; g2).
Choose i ∈ [n1 + 1], j ∈ [n2 + 2] arbitrarily. Then

{g, h} :=
∑
ρ

(
M (ρ)⊗T (ρ)

)(
i◦j ⊗ i•j

)
τ (g ⊗ h), (8.16)

where the summation runs over all isomorphism ρ : [n1+n2]
∼=−→[n1+n2] for which

the restrictions to the subsets

{1, . . . , i − 1} ∪ {n2 + i, . . . , n1 + n2} and {i, . . . , i + n2 − 1}
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are order-preserving. The map τ interchanges the two middle tensor factors. In
particular, if i = n1 + 1, (8.16) is the summation over all (n1, n2)-unshuffles ρ ∈
Σn1+n2 , i.e. permutations ρ ∈ Σn1+n2 such that

ρ(1) < · · · < ρ(n1) and ρ(n1 + 1) < · · · < ρ(n1 + n2).

Proof. Consider the map θ : [n+2] → [n]�{i, j }which coincides with τij of (6.69)
on [n + 2] \ {i, j }, while θ(i) := i and θ(j) := j . By the functoriality (6.53) one
has the equality

◦ijM (θ) =M (τij )◦ij
of maps M (n + 2; g) → M (n; g). On the other hand, M (τij )◦ij = ◦ij by the
definition (6.70) of skeletal operations, thus ◦ijM (θ) = ◦ij . Likewise we establish
that •ijT (θ) = •ij . Formula (8.15) is then obtained by taking in (8.2) the above
isomorphism θ .

Let us prove (8.16). Recall that the summation (8.3) defining the bracket runs
over all subsets S1, S2 ⊂ [n1 + n2] such that S1 � S2 = [n1 + n2] and |S1| = n1,

|S2| = n2. Let X1,X2 be two such subsets. There clearly exists a one-to-one
correspondence between couples (S1, S2) and automorphisms ρ : [n1+n2]

∼=−→[n1+
n2] whose restrictions to X1 and X2 are order-preserving. It follows from this
observation and the functoriality of the structure operations a◦b and a•b that, for
fixed bijections

ϑ1 : [n1 + 1] ∼=−→X1 � {a} and ϑ2 : [n2 + 1] ∼=−→X2 � {b} (8.17)

the right-hand side of (8.3) equals the sum

∑
ρ

(
M (ρ)⊗T (ρ)

)
( a◦b⊗ a•b)

(
ϑ1 ⊗ ϑ2 ⊗ ϑ1 ⊗ ϑ2)τ (g ⊗ h) (8.18)

over automorphisms ρ : [n1 + n2]
∼=−→[n1 + n2] as above.

Let κij be as in (6.7) with m := n1 and n := n2. Take

X1 := {1, . . . , i − 1} ∪ {n2 + i, . . . , n1 + n2}, X2 := {i, . . . , i + n2 − 1}

and notice that

X1 = κij
([n1 + 1] \ {i}) and X2 = κij

([m1 + 1] \ {j }).
Take as ϑ1 in (8.17) the isomorphism that restricts to κij on [n1 + 1] \ {i} and
sends i ∈ [n1 + 1] to a. The isomorphism ϑ2 is defined similarly. Recalling the
definition (6.8) of the skeletal operations, we see that

a◦b(ϑ1 ⊗ ϑ2) =M (κij ) i◦j = i◦j
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and, likewise,

a•b(ϑ1 ⊗ ϑ2) = T (κij ) i•j = i•j .

Taking this in account, we see that for the choices of ϑ1 and ϑ2 above, (8.18) equals
the sum in the right-hand side of (8.16) as required.

Suppose that M is a finite-dimensional, in the sense of Definition 7.8, modular
operad with structure operations a◦b and ◦uv . Suppose moreover that for each finite
sets S1, S2 ∈ Cor and g ∈ A, there are only finitely many couples (g1, g2) ∈ A×2

such that g1 + g2 = g for which the restriction

g1
a◦g2

b :M (
S1 � {a}; g1

)⊗M
(
S2 � {b}; g2

)→M (S1 � S2; g1 + g2)

of the structure operation a◦b is non-zero. Such M clearly fulfills the assumptions
of Proposition 7.1, therefore its piece-wise linear dual M # is a modular cooperad,
with structure operations a

S1; g1
◦b
S2;g2

:= a◦b# and ◦uvg := ◦uv#.

The following statement rephrases Proposition 7.2 for the case when C is the
piece-wise linear dual of a modular operad M as above.

Theorem 8.2 ([1]) Assume that M is a finite-dimensional modular operad as
above andM # its dual modular cooperad. A morphism

α : F (M #)→ T (8.19)

of odd modular dg-operads is then the same as a degree 0 element S ∈ MT satisfying
the master equation

d(S)+Δ(S)+ 1

2
{S, S} = 0 (8.20)

in the desuspended bi-differential graded Lie algebra structure of Theorem 8.1.

Proof. The left-hand side of the master equation (8.20), as an element of the product
MT , vanishes if and only if each of its factors does. The factor in arity n and genus
g equals

dS(n; g)+
∑

g′+s=g
ΔS(n+2; g′)+ 1

2

∑
n1+n2=n

∑
g1+g2=g

{
S(n1+1; g1), S(n2+1; g2)

}
.

(8.21)

We therefore need to prove that (8.21) vanishes for each (n, g) ∈ N× A.



196 8 Structures Relevant to Physics

Let us start by recalling elementary facts about the linear duality. For graded
vector spaces V and W , one has the canonical embedding

N : V ⊗W ↪→ Lin(V #,W) (8.22)

given, for homogeneous α ∈ V #, v ∈ V and w ∈ W , by

N(α)(v ⊗ w) = α(v)w.

This embedding is functorial in the sense that, for S ∈ V ′ ⊗ W ′ and linear maps
h : V ′ → V ′′, f : W ′ → W ′′,

N
(
(h⊗ f )(S)

) = f ◦N(S) ◦ h# ∈ Lin(V ′′,W ′′). (8.23)

If V is non-graded,4 (8.22) is an isomorphism if and only if it is finite-dimensional.
In the general case, the situation is more complicated. The kth graded component

of V ⊗W equals

(V ⊗W)k =
⊕
i+j=k

V i ⊗Wj ,

while the part of Lin(V #,W) of degree k equals

Lin(V #,W)k =
∏

i+j=k
Lin
(
(V #)−i ,Wj

) = ∏
i+j=k

Lin
(
(V i)#,Wj

)
. (8.24)

We see that (8.22) need not be an isomorphism even when both V andW are of finite
type. On the other hand, when both V and W are finite-dimensional, the product
in (8.24) has only finite number of nontrivial factors, so it equals the direct sum,
and (8.22) is an isomorphism.

If V and W are finite-dimensional graded left modules over a finite group G,
then (8.22) restricts to an isomorphism

N = NG : (V ⊗W)G → LinG(V
#,W),

where (V ⊗W)G is the subspace of G-stable vectors under the diagonal action of G,
and LinG(V #,W) the subspace of linear maps φ : V # → W which are equivariant
in the sense that for each α ∈ V # and g ∈ G,

φ(α) = g φ(αg),

4That is, concentrated in degree 0.
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where α 
→ αg is the action dual to the action of G on V . Notice also that for
finite-dimensional vector spaces V1, V2,W1, and W2 one has the following diagram
of natural isomorphisms:

N ⊗ N

Υτ

N

Lin(V #
1 ,W1) ⊗ Lin(V #

2 ,W2).⊗ W1 ⊗ V2 ⊗ W2

Lin (V1 ⊗ V2)
#,W1 ⊗ W2⊗ V2 ⊗ W1 ⊗ W2

(8.25)

Let a◦b and ◦uv be the structure operations of the operad M , and a•b and •uv
the structure operations of the odd modular operad T . We start the actual proof by
representing the morphism (8.19) by the skeletal version (7.36) of the family (7.31)
with C =M #. By the finite-dimensionality assumption, for each n ∈ N and g ∈ A,
there exists a unique

S(n; g) ∈ MT(n; g) = (M (n; g)⊗T (n; g))Σn

such that

N(S(n; g)) = A(n; g) :M (n; g)# → T (n; g).

One therefore has a one-to-one correspondence between skeletal families Ask =
{A(n; g) | (n, g) ∈ N×A} and degree 0 elements S = {S(n; g) | (n, g) ∈ N×A} ∈
MT .

We need to prove that Ask satisfies (7.39) if and only if the corresponding S

satisfies the master equation (8.20). Let us denote, in (7.39) with C =M #,

U(n; g′) := •uvT (θ)A(n+ 2; g′)M (θ)#◦uv#, and

V (n1, n2; g1, g2) := a•b(θ1 ⊗ θ2)
(
A(n1+1; g1)⊗ A(n2+1; g2)

)
(θ#

1 ⊗ θ#
2 ) a◦b#.

With this notation, Eq. (7.39) reads

dT A(n; g) = A(n; g)d#
M +

∑
g′+s=g

U(n; g′) (8.26)

+ 1

2

∑
g1+g2=g

∑
S1�S2=[n]

V (n1, n2; g1, g2).



198 8 Structures Relevant to Physics

Assume we have proved that

N
(
dS(n; g)) = A(n; g)d#

M − dT A(n; g), (8.27)

N
(
ΔS(n+ 2; g′)) = U(n; g), and (8.28)

N
({S(n1; g1), S(n2; g2)}

) = V (n1, n2; g1, g2). (8.29)

Then (8.26) is N applied to (8.21). Since N is an isomorphism by assumptions,
(8.21) vanishes if and only if (8.26) does.

Let us prove (8.27). By the definition of the differential d ,

N
(
dS(n; g)) = N

(
(dM ⊗ 1)S(n; g)) −N

(
(1⊗ dT )S(n; g)).

Taking (8.23) with V ′ = V ′′ = M (n; g), W ′ = W ′′ = T (n; g), h = dM , and
f = 1 one sees that

N
(
(dM ⊗ 1)S(n; g)) = N

(
S(n; g))d#

M = A(n; g)d#
M

while, with h = 1 and f = dT , (8.23) gives

N
(
(1⊗ dT )S(n; g)) = dT N

(
S(n; g)) = dT A(n; g).

The above three displays combine to (8.27). Equation (8.28) is proven by taking
in (8.23)

V ′ =M (n+ 2; g′), W ′ = T (n+ 2; g′), V ′′ =M (n; g′ + s),

W ′′ = T (n; g′ + s), f = •uvT (θ) and h = ◦MuvM (θ).

By the definition (8.2) of the operation Δ, one has

N
(
ΔS(n+ 2; g′)) = N

(
(◦MuvM (θ)⊗ •uvT (θ))S(n+ 2; g′))

= •uvT (θ)N(S(n+ 2; g′))M (θ)#◦uv#

= •uvT (θ)A(n+ 2; g′)M (θ)#◦uv# = U(n; g′),

which is (8.28). Finally, by the definition (8.3) of the bracket,

N{S(n1+1; g1), S(n2+1; g2)} (8.30)

=
∑

S1� S2=[n1+n2]
N
(
( a◦b⊗a•b)τ (θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2)(S(n1+1; g1)⊗ S(n2+1; g2))

)
.

As in the proof of Theorem 8.1, the above formula was shortened by denoting the
actions of morphisms M (θi) resp. T (θi) by θi, i = 1, 2, the exact meaning being
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always clear from the context. For instance, the full name of the term in the bracket
on which τ acts is

M (θ1)⊗T (θ1)⊗M (θ2)⊗T (θ2).

Isomorphism (8.23) with

V ′ =M (n1 + 1; g1)⊗M (n2 + 1; g2), W
′ = T (n1 + 1; g1)⊗T (n2 + 1; g2)

V ′′ =M (n; g), W ′′ = T (n; g), h = a◦b, and f = a•b,

converts the right-hand side of (8.30) into

∑
S1� S2=[n1+n2]

a•b N
(
τ(θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2)(S(n1 + 1; g1)⊗ S(n2 + 1; g2))

)
a◦b#. (8.31)

The commutativity of diagram (8.25), with

V1 =M (n1 + 1; g1), V2 =M (n2 + 1; g2),

W1 = T (n1 + 1; g1) and W2 = T (n2 + 1; g2)

implies that

N
(
τ (θ1 ⊗ θ1 ⊗ θ2 ⊗ θ2)(S(n1 + 1; g1)⊗ S(n2 + 1; g2))

)

equals

Υ
(
N((θ1 ⊗ θ1)(S(n1 + 1; g1)))⊗N((θ1 ⊗ θ1)(S(n2 + 1; g2)))

)

which can be rewritten using (8.23) twice as

Υ
(
θ1A(n1 + 1; g1)θ

#
1 ⊗ θ2A(n2 + 1; g1)θ

#
2

)

which clearly equals

(θ1 ⊗ θ2)
(
A(n1+1; g1)⊗ A(n2+1; g2)

)
(θ#

1 ⊗ θ#
2 ).

Inserting this expression into (8.31) gives the right-hand side of (8.29). This finishes
the proof.
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8.2 Loop Homotopy Algebras

In this section we describe algebras over the Feynman transform F (QC #) of the
dual of the quantum closed operad QC and identify them with loop (aka quantum)
homotopy Lie algebras. As we noticed in Examples 6.24 and 6.26, the modular
operad QC is stable, isomorphic to the modular envelope Mod(Com) of the cyclic
commutative operad, which is in turn isomorphic to the linear span of the terminal
stable modular operad ∗Mod. Thus

QC (S; g) =
{
k if (S, g) ∈ S, and

0 otherwise,
(8.32)

with the trivial actions of the symmetric groups. This implies that QC (S; g)# =
k for each (S, g) ∈ S and that all the structure operations of the dual modular
cooperad QC # are either the canonical isomorphisms k

∼=−→ k ⊗ k or the identities
1 : k ∼=−→ k.

As the first step, we analyze the space MT(n; g) of Definition 8.1 in the case
when M = QC and when T is an odd modular operad with A = N and step
s = 1. It follows from (8.32) that

QCT(n; g) =
{
T (n; g)Σn if (n, g) ∈ Ssk, and

0 otherwise,

where Ssk is the skeletal version (6.71) of the set S, therefore

QCT =
∏

(n,g)∈Ssk

T (n; g)Σn . (8.33)

The skeletal form of the structure operations in Proposition 8.1 is easy to
describe. Choosing i = 1, j = 2 in (6.12) gives

Δ(f ) = •12(f ) ∈ T (n; g + 1)Σn (8.34)

for f ∈ T (n+ 2; g)Σn+2 . Similarly, (8.16) with i = n1 + 1 and j = 1 gives5

{g, h} :=
∑

σ∈uSh(n1,n2)

T (σ )(g n1+1•1 h) ∈ T (n1 + n2; g1 + g2)
Σn1+n2 (8.35)

5In Eq. (8.35), g n1+1•1 h := n1+1•1(g ⊗ h).
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for g ∈ T (n1 + 1; g1)
Σn1+1 and h ∈ T (n2 + 2; g2)

Σn2+1 , with the summation
running over all (n1, n2)-unshuffles σ ∈ Σn1+n2 , that is, permutations σ such that

σ(1) < · · · < σ(n1) and σ(n1 + 1) < · · · < σ(n1 + n2).

The master equation (8.20) describing morphisms α : F (QC #) → T in terms
of degree 0 elements S ∈ QCT therefore reads

dT S = •12(S)+ 1

2

∑
σ∈uSh(n1,n2)

T (σ )(S n1+1•1 S).

By (8.33), S is a sequence of elements S(n; g) ∈ T (n; g)Σn, (n, g) ∈ Ssk,
where the set Ssk was defined in (6.71). It will be convenient to put by definition
S(n; g) := 0 if (n, g) �∈ Ssk. The above master equation then means that, for each
(n, g) ∈ Ssk,

dT S(n; g) = •12S(n+2; g−1)+ 1

2

∑
S(n1+1; g1) n1+1•1 S(n2+1; g2)

(8.36)

with the summation taken over n1+n2 = n, g1+g2 = g and σ ∈ uSh(n1, n2).
Let us finally apply our machinery in the situation when T is the odd endo-

morphism operad EndV of Example 6.31 in the skeletal presentation given in
Example 6.32. In this particular case we use more traditional notation and denote
f
g
n := S(n; g) ∈ EndV (n; g), for n ≥ 0, g ≥ 0. So f

g
n is a degree 0 function

V⊗n → k which is zero if (n, g) �∈ Ssk. If V is equipped with a differential d , we
denote by the same symbol the differential induced in the standard manner on the
space of functions V⊗n → k.

Theorem 8.3 An algebra over the Feynman transform F (QC #) on a dg-vector
space V = (V , d) equipped with a degree+1 d-closed symmetric element

s =
∑

s′i ⊗ s′′i ∈ V ⊗ V

is the same as a collection

{
f
g
n : V⊗n → k | (n, g) ∈ Ssk

}

of degree 0 totally symmetric linear maps satisfying, for each (n, g) ∈ Ssk, the
equation

d(f
g
n ) =

∑
f
g−1
n+2 (s

′
i ⊗ s′′i ⊗ 1⊗n) (8.37)

+ 1

2

∑(
f
g1
n1+1(1

⊗n1 ⊗ s′i )f
g2
n2+1(s

′′
i ⊗ 1⊗n2)

)
σ−1,
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where the second sum is taken over all n1 + n2 = n, g1 + g2 = g, and unshuffles
σ ∈ uSh(n1, n2).6

Proof. All terms in (8.37) are degree+1 totally symmetric functionsV ⊗n → k. Let
us inspect how they act on a homogeneous element v1⊗· · ·⊗vn ∈ V⊗n. As before,
we will save space by writing e.g. f g

n (v1, . . . , vn) instead of f g
n (v1⊗· · ·⊗vn). The

value of the first term in the right-hand side of (8.37) is

∑
f
g−1
n+2 (s

′
i ⊗ s′′i ⊗ 1⊗n)(v1, . . . , vn) =

∑
f
g−1
n+2 (s

′
i , s

′′
i , v1, . . . , vn)

which coincides with •12(f
g−1
n+2 ) described in Example 6.32, evaluated at v1, . . . , vn.

The symbol σ−1 occurring in the second term in the right-hand side denotes the
map V ⊗n → V⊗n that permutes the factors of V⊗n according to the permutation
σ−1. Thus

1

2

∑(
f
g1
n1+1(1

⊗n1 ⊗ s′i )f
g2
n2+1(s

′′
i ⊗ 1⊗n2 )

)
σ−1(v1, . . . , vn)

= 1

2

∑
ε(σ )(−1)|s ′i |f g1

n1+1(vσ(1), . . . , vσ(n1), s
′
i )f

g2
n2+1(s

′′
i , vσ(n1+1), . . . , vσ(n)),

where ε(σ ) is the Koszul sign of the permutation σ . The summand obviously,
modulo the sign factor, coincides with

EndV (σ )(f
g1
n1+1 n1+1•1 f

g2
n2+1)

as defined in Example 6.32, evaluated at v1, . . . , vn. To verify that also the sign
factor (−1)|s ′i | is in place, we need to realize that, since f g1

n1+1 is of degree 0,

f
g1
n1+1(vσ(1), . . . , vσ(n1), s

′
i ) �= 0

only if

|vσ(1)| + · · · + |vσ(n1)| + |s′i | = 0,

therefore |vσ(1)| + · · · + |vσ(n1)| ≡ |s′i | mod 2. We thus verified that (8.37) is
indeed (8.36) with T = EndV .

For the sake of completeness we add that the term in left-hand side of (8.37) acts,
by the definition of the induced differential, on v1 ⊗ · · · ⊗ vn by

d(f
g
n )(v1, . . . , vn) = −

∑
1≤i≤n

(−1)|v1|+···+|vi−1|f g
n (v1, . . . , dvi , . . . , vn),

(8.38)

6The summation over repeated indexes, i.e. i in this case, is implicitly assumed.
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We are going to rewrite (8.37) into an equivalent form closer to Equation (33)
of [9]. Our translation will be based on the correspondence that assigns, for n ≥ 1,
to a degree k function f : V⊗n → k the degree k+ 1 map δ : V ⊗(n−1) → V by the
formula

δ(v1, . . . , vn−1) =:
∑

(−1)k|s ′′i |f (s′i , v1, . . . , vn−1)s
′′
i , (8.39)

for v1, . . . , vn−1 ∈ V . The correspondence f 
→ δ is one-to-one when s is
non-degenerate. Let us explain the sign factor (−1)k|s ′′i |. We started from the
composition7

∑
(1⊗ f )(s′′i ⊗ s′i ⊗ v1, . . . , vn−1)

which, according to the Koszul sign convention, equals

∑
(−1)k|s ′′i |s′′i ⊗ f (s′i , v1, . . . , vn−1).

Next we commuted the degree |s′′i | vector s′′i with the scalar f (s′i , v1, . . . , vn−1) of
degree 0 and obtained

∑
(−1)k|s ′′i |f (s′i , v1, . . . , vn−1)⊗ s′′i .

Finally, we multiplied the vector s′′i with the scalar f (s′i , v1, . . . , vn−1). The result
was the right-hand side of (8.39).

Notice that when f is fully symmetric in homogeneous v1, . . . , vn, δ is fully
symmetric in v1, . . . , vn−1. In this case also

f (s′i , v1, . . . , vn−1) = (−1)|s ′i |(|v1|+···+|vn−1|)f (v1, . . . , vn−1, s
′
i ).

Since f is of degree k, f (v1, . . . , vn−1, s
′
i ) �= 0 only if

|v1| + · · · + |vn−1| + |s′i | + k = 0,

so |v1| + · · · + |vn−1| ≡ |s′i | + k mod 2. We therefore have

f (s′i , v1, . . . , vn−1) = (−1)|s ′i |(|s ′i |+k)f (v1, . . . , vn−1, s
′
i )

= (−1)|s ′i |+k|s ′i |f (v1, . . . , vn−1, s
′
i ).

7Notice that
∑

s′′i ⊗ s′i = s′i ⊗ s′′i because s is symmetric and |s′i | + |s′′i | = 1.
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Substituting the last expression into formula (8.39) produces, in the symmetric case,
an alternative formula

δ(v1, . . . , vn−1) = (−1)|s ′i |+k(|s ′i |+|s ′′i |)
∑

f (v1, . . . , vn−1, s
′
i )s

′′
i (8.40)

= (−1)|s ′i |+k
∑

f (v1, . . . , vn−1, s
′
i )s

′′
i .

Let us finally denote, for n ≥ 1 and g ≥ 0, by δgn−1 : V ⊗n−1 → V the degree 1 map
corresponding to the degree 0 function f g

n : V n → k. Explicitly

δ
g
n−1(v1, . . . , vn−1) :=

∑
f n
g (s

′
i , v1, . . . , vn−1)s

′′
i

= (−1)|s ′i |
∑

f n
g (v1, . . . , vn−1, s

′
i )s

′′
i

for v1, . . . , vn−1 ∈ V .
Let us start to apply our correspondence between functions V n → k and maps

V⊗n−1 → V to the terms of (8.37). Since they are all of degree 1, we have
k = 1 in (8.39) resp. in (8.40). Using formula (8.38), we conclude that the map
corresponding to the left-hand side of (8.37) is given by

∑
1≤i≤n−1

(−1)|v1|+···+|vi−1|+|s ′i |f g
n (v1, . . . , dvi , . . . , vn−1, s

′
i )s

′′
i

−
∑

f
g
n (v1, , . . . , vn−1, ds

′
i )s

′′
i .

The rightmost term appears with the minus sign because f g
n (v1, , . . . , vn−1, ds

′
i ) �=

0 only if

|v1| + · · · + |vn−1| + |s′i | + 1 = 0.

Since s is d-closed by assumption, ds′i ⊗ s′′i + (−1)|s ′i |s′i ⊗ ds′′i = 0, so

−f g
n (v1, . . . , vn−1, ds

′
i )s

′′
i = (−1)|s ′i |f g

n (v1, . . . , vn−1, s
′
i )ds

′′
i .

By (8.39),

∑
f
g
n (v1, . . . , dvi , . . . , vn−1, s

′
i )s

′′
i = (−1)|s ′i |

∑
δ
g

n−1(v1, . . . , dvi , . . . , vn−1)

and
∑

f
g
n (v1, . . . , vn−1, s

′
i )s

′′
i = (−1)|s ′i |

∑
δ
g

n−1(v1, . . . , vn−1)
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which, combined with the above calculations, shows that the map corresponding to
the left-hand side of (8.37) is given by

∑
1≤i≤n−1

(−1)|v1|+···+|vi−1|δgn−1(v1, . . . , dvi , . . . , vn−1)+ dδ
g
n−1(v1, . . . , vn−1).

We conclude that the left-hand side of (8.37) is translated into d(δgn−1), where d now
denotes the induced differential on the space of maps V⊗n−1 → V .

The degree 2 map V ⊗(n−1) → V corresponding to the first term in the right-hand
side of (8.37) is, by (8.39), given as

∑
(−1)|s

′′
j |f g−1

n+2 (s
′
i , s

′′
i , s

′
j , v1, . . . , vn−1)s

′′
j

=
∑

(−1)|s
′′
j |+(|s ′i |+|s ′′i |)|s ′j |f g−1

n+2 (s
′
j , s

′
i , s

′′
i , v1, . . . , vn−1)s

′′
j

= −
∑

δ
g−1
n+1(s

′
i , s

′′
i , v1, . . . , vn−1),

where we used that |s′′j | + (|s′i | + |s′′i |)|s′j | = |s′′j | + |s′j | = 1.
The analysis of the second term in the right-hand side is subtler. Denote by

uSh′(n1, n2) the set of all (n1, n2)-unshuffles σ ∈ uSh(n1, n2) such that σ(n) = n.
Notice that then

1

2

∑
ε(σ )(−1)|s ′i |f g1

n1+1(vσ(1), . . . , vσ(n1), s
′
i )f

g2
n2+1(s

′′
i , vσ(n1+1), . . . , vσ(n))

=
∑ ′ε(σ )(−1)|s ′i |f g1

n1+1(vσ(1), . . . , vσ(n1), s
′
i )

× f
g2
n2+1(s

′′
i , vσ(n1+1), . . . , vσ(n−1), vn),

where
∑′ denotes the sum in the first line of the display restricted to uSh′(n1, n2).

Consequently, the degree +2 map V⊗(n−1) → V corresponding to the second term
in the right-hand side of (8.37) is

−
∑ ′ε(σ )(−1)|s

′
i |+|s ′j |f g1

n1+1(vσ(1), . . . , vσ(n1), s
′
i )

× f
g2
n2+1(s

′′
i , vσ(n1+1), . . . , vσ(n−1), s

′
j )s

′′
j .

Noticing that

f
g2
n2+1(s

′′
i , vσ(n1+1), . . . , vσ(n−1), s

′
j )s

′′
j = (−1)|s

′
j |δg2

n2 (s
′′
i , vσ(n1+1), . . . , vσ(n−1)),

we rewrite it into

−
∑ ′ε(σ )(−1)|s ′i |f g1

n1+1(vσ(1), . . . , vσ(n1), s
′
i )δ

g2
n2 (s

′′
i , vσ(n1+1), . . . , vσ(n−1)).
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Since f g1
n1+1(vσ(1), . . . , vσ(n1), s

′
i ) ∈ k, we use the multilinearity of δg2

n2 and further
rewrite the above sum into

−
∑ ′ε(σ )(−1)|s ′i |δg2

n2

(
f
g1
n1+1(vσ(1), . . . , vσ(n1), s

′
i )s

′′
i , vσ(n1+1), . . . , vσ(n−1)

)
.

Noticing finally that

f
g1
n1+1(vσ(1), . . . , vσ(n1), s

′
i )s

′′
i = (−1)|s ′i |δg1

n1 (vσ(1), . . . , vσ(n1)),

we see that the above sum equals

−
∑ ′ε(σ )δg2

n2

(
δ
g1
n1 (vσ(1), . . . , vσ(n1)), vσ(n1+1), . . . , vσ(n−1)

)

which in turn equals

−
∑

ε(τ )δ
g2
n2

(
δ
g1
n1 (vτ(1), . . . , vτ(n1)), vτ(n1+1), . . . , vτ(n−1)

)
,

where τ runs over all (n1, n2 − 1)-unshuffles.
Summing the above calculations, we obtain the formula

0 = d(δ
g

n−1)(v1, . . . , vn−1)+
∑

δ
g−1
n+1(s

′
i , s

′′
i , v1, . . . , vn−1) (8.41)

+
∑

ε(τ )δ
g2
n2

(
δ
g1
n1 (vτ(1), . . . , vτ(n1)), vτ(n1+1), . . . , vτ(n−1)

)
.

that has to be satisfied for all homogeneousv1, . . . , vn−1 ∈ V . Recall that the second
summation in the right-hand side runs over all n1 + n2 = n, g1 + g2 = g, and
unshuffles τ ∈ uSh(n1, n2 − 1). In a concise, elements-free form (8.41) reads

0 = d(δ
g
n−1)+

∑
δ
g−1
n+1(s

′
i , s

′′
i ,1

⊗(n−1))+
∑

δ
g2
n2 (δ

g1
n1 ,1

⊗(n1−1))τ−1.

By the stability assumption, f 0
2 : V⊗2 → V and therefore δ0

1 : V → V is
identically zero. A useful trick is to define δ0

1 := d to be the differential of the
underlying vector space. The first term in the right-hand side of (8.41) can then be
absorbed into the third one, leading to

0 =
∑

ε(τ )δ
g2
n2

(
δ
g1
n1 (vτ(1), . . . , vτ(n1)), vτ(n1+1), . . . , vτ(n−1)

)
(8.42)

+
∑

δ
g−1
n+1(s

′
i , s

′′
i , v1, . . . , vn−1).

Changing the symbol n to n+1, n1 to l, n2 to k, g1 to g2, g2 to g1 and τ to σ , and
replacing

∑
s′i ⊗ s′′i to 1

2

∑
yi ⊗ yi we recognize the incarnation of loop homotopy

algebras described in [9, Sublemma 2]. Particular cases of this structure with δgn = 0
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whenever g ≥ 1 are strongly homotopy Lie algebras [8], see the discussion of the
“tree level” in [9, page 372].

8.3 IBL∞-algebras

In this final section of the mathematical part we review, following closely [12],
a common generalization of loop homotopy algebras as well as Lie bialgebras. We
start by recalling some necessary auxiliary notions. Let A be a unital associative
commutative algebra and Δ : A → A a k-linear map. For n ≥ 0, consider the
iterated graded commutators

[[ . . . [Δ,La1], ...], Lan] : A→ A,

with La denoting the operator of left multiplication by a ∈ A. By convention, we
just set the commutator of Δ with n = 0 left-multiplication operators to be Δ. We
call an operatorΔ an order≤ k differential operator if the iterated commutator with
any k + 1 left-multiplication operators vanish.

Now suppose that Δ(1) = 0.8 Define

ΦΔ
n (a1, . . . , an) := [[ . . . [Δ,La1], ...], Lan](1) ∈ A.

In particular, ΦΔ
0 = 0. If ΦΔ

n = 0 for n > k, the operator Δ is called an order k
derivation [11, Section 1.2].

Example 8.1 Assume for simplicity that the degree ofΔ is 0 and thatA is ungraded,
the general graded case can be discussed analogously. For a, x ∈ A one has
[Δ,La](x) = Δ(ax) − aΔ(x). Invoking the unitality of A we immediately see
that Δ is an order 0 operator if and only if it is the left multiplication by Δ(1). Since
ΦΔ

1 = Δ, the only degree 0 derivations are trivial maps.
For a, b, x ∈ A one has

[[Δ,La], Lb

]
(x) = Δ(abx) − aΔ(bx) − Δ(ax)b +

aΔ(x)b. We leave as an exercise to show that Δ is an order ≤ 1 operator if and
only if it (uniquely) decomposes into the sum of the left multiplication LΔ(1) with a
derivation. Since

ΦΔ
2 (a, b) = Δ(ab)− aΔ(b)−Δ(a)b,

the first order derivations are “ordinary” derivations, i.e. vector fields.

Definition 8.2 Let S(U) be the polynomial algebra generated by a graded vector
space U and h̄ a formal degree 0 symbol. An IBL∞-algebra structure on U [4],
[13, §4.2] is given by a degree 1, k[[h̄]]-linear map Δ : S(U)[[h̄]] → S(U)[[h̄]]

8All operators Δ in this section will share this property.
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satisfying Δ2 = 0, Δ(1) = 0, which moreover decomposes into a sum

Δ = Δ1 + h̄Δ2 + h̄2Δ3 + · · · , (8.43)

where

Δk : S(U)[[h̄]] → S(U)[[h̄]] (8.44)

is an order ≤ k differential operator on the polynomial algebra S(U)[[h̄]].

As proved in [9, Proposition 3], an order ≤ k differential operator as in (8.44)
with Δ(1) = 0 is determined by its restrictions

Δk|St (U)[[h̄]] : St (U)[[h̄]] → S(U)[[h̄]]

to the subspaces St (U) ⊂ S(U) of polynomials of length t with 1 ≤ t ≤ k.
These restrictions are, due to the assumed k[[h̄]]-linearity, in turn determined by
their restrictions

ωk,t := Δk|St (U) : St (U)→ S(U)[[h̄]] (8.45)

and thus, after singling out the coefficients at h̄g, by the family

ωk,t,g := Δk|St (U) : St (U)→ S(U)

such that ωk,t =∑g≥0 ωk,t,gh̄
g. Moreover, each ωk,t,g is determined by a family

ωsk,t,g : St (U)→ Ss(U), s ≥ 0, (8.46)

which is locally finite in the sense that, for a given u ∈ St (U), ωsk,t,g(u) �= 0 for
only finitely many s.

On the other hand, backtracking the above procedure we readily see that each
family of locally finite degree +1 maps

{
ωsk,t,g : St (U)→ Ss(U) | k ≥ 1, 1 ≤ t ≤ k, g, s ≥ 0

}
(8.47)

as in (8.46) assembles into a map Δ in (8.43). The one-to-one correspondence
{ωsk,t,g} ↔ Δ can be made explicit using the calculations in Section 3 of [9]. General
formulas are however clumsy so we do not include them here.

Remark 8.1 We saw that IBL∞-algebras can be viewed as structures with infinitely
many degree +1 operations (8.46) satisfying an infinite set of axioms obtained
by assembling them into Δ and requiring Δ2 = 0. Since IBL∞-algebras possess
structure operations with several inputs and several outputs, they are not algebras
over operads, but over more general objects called PROPs recalled e.g. in [10].
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One sometimes considers versions of Definition 8.2 with h̄ having degree
different from 0. The convention when |h̄| = 2 is implicit in [6] and explicit in
[2], an arbitrary even degree is allowed in [3, 4]. Our convention that h̄ has degree
zero follows [13] and, of course, [12]. When |h̄| �= 0, the operator Δk in (8.43)
has degree

1 + (1 − k)|h̄|

and the operators ωsk,t,g in (8.47) degree

1 + (1 − k − g)|h̄|.

Example 8.2 Suppose that |h̄| = 2 and consider IBL∞-algebras for which the only
nontrivial operations are ω1

2,2,0 : S2(U) → U of degree −1 and ω2
1,1,0 : U →

S2(U) of degree 1. This in particular means that Δ in (8.43) is of the form

Δ = Δ1 + h̄Δ2, (8.48)

where Δ1,Δ2 : S(U) → S(U). It turns out that such IBL∞-algebras are the same
as involutive Lie bialgebras whose definition we recall below, on the desuspension
V :=↓U of U .

A Lie bialgebra is a graded vector space V equipped with a Lie algebra structure
� = [−,−] : V ⊗ V → V and a Lie diagonal (comultiplication) δ : V → V ⊗ V .
Explicitly, we assume that the bracket [−,−] is anti-symmetric and satisfies the
Jacobi equation

(−1)|a||c|
[[a, b], c]+ (−1)|c||b|

[[c, a], b]+ (−1)|b||a|
[[b, c], a] = 0 (8.49)

and that δ satisfies the obvious duals of these conditions. We also assume that [−,−]
and δ are related by

δ[a, b] (8.50)

=
∑(

(−1)|a′′i ||b|[a′i , b] ⊗ a′i + [a, b′j ] ⊗ b′′j + a′i ⊗ [a′′i , b]

+(−1)|a||b
′
j |b′j ⊗ [a, b′′j ]

)

for any a, b ∈ V , where we used the Sweedler notation

δa =
∑

a′i ⊗ a′′i , and δb =
∑

b′j ⊗ b′′j .
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A Lie bialgebra as above is involutive if, moreover

∑
[a′i, a′′i ] = 0, (8.51)

for a ∈ V and
∑

a′i ⊗ a′′i := δa.
Returning to an IBL∞-algebra in the beginning of this example, one may define

degree 0 linear operations on the desuspension V =↓U by

� :=↓ω1
2,2,0(↑⊗ ↑) : V ∧ V → V and δ := (↓⊗ ↓) ω2

1,1,0 ↑: V → V ∧ V.

Due to the special form (8.48) of Δ, one has

Δ2 = (Δ1 + h̄Δ2)
2 = Δ2

1 + (Δ1Δ2 +Δ2Δ1)h̄+Δ2
2h̄

2.

Therefore Δ2 = 0 is equivalent to the separate vanishing of Δ2
1, (Δ1Δ2 +Δ2Δ1)

2,
and Δ2

2. Since Δ2
1 is a derivation, see [9, Proposition 1], its vanishing is equivalent

to the vanishing of the restriction Δ2
1|U : U → S3(U) which is easily seen to

be equivalent to the dual Jacobi identity for δ. A similar reasoning shows that the
vanishing of (Δ1Δ2 + Δ2Δ1)

2 is equivalent to the compatibility (8.50) and the
involutivity (8.51). Finally, the vanishing of Δ2

2 is equivalent to the Jacobi identity
for [−,−] = �. With this example in mind, one might view IBL∞-algebras as
homotopy versions of involutive Lie bialgebras, which explains the terminology.

Example 8.3 In this and the following example we assume that U is a graded vector
space with finite-dimensional components. With this assumption, IBL∞-algebras
whose only nontrivial operations are

ωs1,1,0 : U → Ss(U), s ≥ 1,

are the same as L∞-algebras on the dual V = U# of U . Indeed, the operator Δ
in (8.43) is in this case just a derivation Δ1 : S(U) → S(U) such that Δ2

1 = 0.
Our statement is then the second part of [8, Theorem 2.3] with the reversed grading.
Notice that d := (ω1

1,1,0)
# : V → V is a degree +1 differential.

Example 8.4 We leave as an exercise to prove that IBL∞-algebras whose only
nontrivial operations are

ω1
1,1,0 : U → U,

{
ωs1,1,g : U → Ss(U)

}
s≥2,g≥0 and B := ω0

2,2,0 : S2(U)→ k

(8.52)

are the same as loop homotopy Lie algebras on the dual V := U# in the form (8.42).
Indeed, defining the differential d on V to be the dual of ω1

1,1,0, the map s : k →
S2(V ) the dual of B and the operations δgn the duals of ωs1,1,g, we see that the
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structure equation Δ2 = 0 for Δ assembling the operations in (8.52) is equivalent
to the axioms of a loop homotopy algebra with the operations δgn acting on the
differential graded vector space (V , d) equipped with the closed symmetric degree
+1 element s ∈ V ⊗ V .

The basic difference between the description of loop homotopy algebras given
in Sect. 8.2 and the one in Example 8.4 above is that there the bilinear form B =
ω0

2,2,0 is considered as a structure operation, while in Sect. 8.2 the corresponding
symmetric element was fixed from the beginning.

Morphism Besides the commutative associative multiplication, the polynomial
algebra S(U) bears also the coproduct δ : S(U)→ S(U)⊗S(U) which turns it into
a commutative associative cocommutative coassociative coalgebra. The coproduct
given by the formula

δ(u1 # · · · # un) =
∑ ε(σ )

a! b! [uσ(1)# · · · # uσ(a)] ⊗ · · · ⊗ [uσ(a+1)# · · · # uσ(n)],

where the summation runs over all permutations σ ∈ Σk and integers a, b ≥ 0 such
that a + b = n. As always, ε(σ ) denotes the Koszul sign and by # we denote the
standard commutative product of S(U).

It is well known, see e.g. [5, §III.3], that the space Link(A,C) of linear maps
from a commutative associative algebra A with multiplication μ to a cocommu-
tative coassociative coalgebra C with comultiplication δ admits the commutative
coassociative convolution product � defined as

f � g := μ(f ⊗ g)δ, f, g ∈ Link(A,C).

In particular, Link
(
S(U ′), S(U ′′)

)
with the convolution product � is a commutative

associative algebra. One easily sees that the composition

e := S(U ′) � S0(U ′) ∼= k ∼= S0(U ′′) ↪→ S(U ′′) ∈ Link
(
S(U ′), S(U ′′)

)

of the natural projection followed by the natural inclusion is the unit for �. The
above constructions extend by the k[[h̄]]-linearity to the space

Link[[h̄]]
(
S(U ′)[[h̄]], S(U ′′)[[h̄]])

of k[[h̄]]-linear maps which we will, for brevity, denote by Linh̄
(
S(U ′), S(U ′′)

)
believing that the reader will not be too confused by this shorthand.

We denote finally by Lin0
h̄

(
S(U ′), S(U ′′)

)
the subset of Linh̄

(
S(U ′), S(U ′′)

)
consisting of k[[h̄]]-linear maps such that

f (1) ∈ S(U ′′)[[h̄]]. (8.53)
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The conilpotency of the coalgebra structure of S(U ′) together with the h̄-adic
completeness of k[[h̄]] implies:

Lemma 8.2 All power series in elements of Lin0
h̄(S(U

′), S(U ′′)) converge.9

In particular, for f ∈ Lin0
h̄(S(U

′), S(U ′′)) it makes sense to take the exponential

exp(f ) := e+ f + f 2

2! +
f 3

3! + · · · ∈ Lin0
h̄(S(U

′), S(U ′′))

as well as the logarithm

log(e+ f ) := f − f 2

2
+ f 3

3
− · · · ∈ Lin0

h̄(S(U
′), S(U ′′)).

Having prepared this auxiliary material, we formulate:

Definition 8.3 A morphism of IBL∞-algebras (S(U ′),Δ′) and (S(U ′′),Δ′′) is a
k[[h̄]]-linear map

f : S(U ′)[[h̄]] → S(U ′′)[[h̄]]

of the form

f = f (1) + h̄f (2) + h̄2f (3) + · · ·

such that

f (1)(1) = 0, Δ′′ ◦ exp(f ) = exp(f ) ◦Δ′, and (8.54)
⊕
n>k

Sn(U ′) ⊂ Ker(f (k)). (8.55)

Notice that the first equation in (8.54) guarantees that such an f satisfies (8.53) so
it belongs to Lin0

h̄

(
S(U ′), S(U ′′)

)
and thus the exponential in (8.54) exists. Another

version of this definition was considered [13, §4.3] where (8.55) was replaced with
a “dual” condition:

Im(f (k)) ⊂
⊕

1≤n≤k
Sn(U ′′).

9Convergence is always understood in the h̄-adic topology.
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As proved in [12, Corollary 33], IBL∞-algebras with the above morphisms form
a category with the composition

f $ g := log
(

exp(f ) ◦ exp(g)
)

and the categorical unit

1S(U) = log
(
1S(U)[[h]]

)
.

As argued in [12], IBL∞-algebras form a subcategory of the still bigger category of
Markl–Voronov algebras.

Example 8.5 Iterating the definition of the coproduct δ in S(U), one obtains for the
exponential in (8.54) the expression

exp(f )(u1 # · · · # un)

=
∑ 1

k!
ε(σ )

a1! · · · ak!f (uσ(1) # · · · # uσ(a1)) · · · f (uσ(n−ak+1) # · · · # uσ(n)),

where the summation runs over all permutations σ ∈ Σn, all k ≥ 1, and all non-
negative integers a1, . . . , ak such that a1 + · · · + ak = n. We recognize a formula
in [3, Section 5].

Example 8.6 The category of IBL∞-algebras contains a non-full subcategory
whose objects are L∞-algebras as in Example 8.3 and morphisms are k-linear
maps

f : S(U ′)→ S(U ′′)

such that

f (1) = 0, Δ′′ ◦ exp(f ) = exp(f ) ◦Δ′, and Im(f ) ⊂ U ′′.

Such a map automatically belongs to Lin0
h̄

(
S(U ′), S(U ′′)

)
. We leave as an exercise

to prove that

exp(f ) : S(U ′)→ S(U ′′)

is the unique extension of f into a morphism of unital algebras. We identify this
result as the dual to that of [7, Remark 5.3] describing the category of L∞-algebras
and their (weak) L∞-morphisms.
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8.4 Comments and Remarks Related to Part I

In Sect. 6.1, we introduced cyclic operads. The simplest example is the cyclic
commutative operad of Example 6.1. Another example is the cyclic associative
operad. However, this one is described only later, cf. Sect. 6.2, Example 6.18, as
a symmetrization of the non-Σ cyclic associative operad, Example 6.17. Further
example is the cyclic endomorphism operad in Example 6.6 and its dual version,
cf. Example 6.7. An important point is that each cyclic operad is a quotient of the
free cyclic operad on some cyclic module, see Proposition 6.3. From the point of
view adopted in Part I, cf. Sects. 3.8 and 4.3, cyclic operads are relevant to the
classical string field theory, the commutative case to closed strings, the associative
to open strings.

In Sect. 6.2, we introduced the non-Σ cyclic operads. The simplest example is
the non-Σ cyclic associative operad in Example 6.17. As already mentioned, the
cyclic associative operad is its symmetrization, cf. Example 6.18.

In Sect. 6.3 (cyclic) operad algebras were introduced. Such an algebra is a
morphism from a cyclic operad to the endomorphism operad. This led us to non-
unital Frobenius algebras in the associative case in Example 6.21 and to their
commutative versions in the commutative one in Example 6.22. These are the
familiar structures from the two-dimensional topological quantum field theory.

In Sect. 6.4 we discussed modular operads. Again, the simplest example is
the modular commutative operad of Example 6.24. It is the modular completion
(envelope) of the cyclic commutative operad. From the point of view of Part I,
Sect. 3.8, it is the operad relevant to the quantum closed string field theory. This
is the reason why we called it also quantum closed operad through the text. As
for the modular associative operad (quantum open operad), its explicit description
preceding Theorem 6.1 is rather complicated. Nevertheless, it is defined abstractly
as the modular completion of the cyclic associative operad. Another possible
description is as a symmetrization of the modular completion of the non-Σ cyclic
associative operad. These two operads can be combined rather straightforwardly
into the quantum open-closed operad. This is why we did not describe this
operad explicitly.10 Modular version of the endomorphism operad is used for
defining representations. However, we don’t get new examples of algebras from
representations of modular operads. A cyclic operad and its modular envelope have
the same categories of representations, due to the universal property of the modular
completion.

To obtain homotopy algebras as representations of operads, and hence make
a direct contact with string field theory and quantum field theory in general, we need
the cobar construction and its modular analogue, the Feynman transform. Operads
resulting from this constructions are, however, not modular operads any more. They
are odd (twisted) modular operads. Their structure operations are of degree one, in

10Neither we discussed, which is much more delicate, its description in terms of a modular
completion.
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contrary to the modular operads having operations of degree zero. This unexpected
degree is related to the degree of the BV bracket and BV operator Δ, which are
inherently present in the construction of an algebra over the Feynman transform of a
modular operad. Hence, in Sect. 6.5 we discussed odd modular operads. An example
directly relevant to quantum field theory and string field theory is the odd modular
version of the endomorphism operad. This is an operad based on a differential
graded vector space equipped with a degree −1 symplectic form. In Part I, we have
met examples of these spaces, namely the representation space of the first quantized
point particle and of the closed, open, and open-closed CFT theory representation
spaces, respectively. The differential was the BRST operator and the odd symplectic
form was related to the product on the respective representation spaces, e.g. BPZ
pairing for strings. Further examples we have met explicitly in Part I were the odd
modular operads of chain complexes on the moduli spaces of Riemann surfaces
associated with (open, closed, open-closed) string field theories. As also discussed
in Part I, conformal field theory provides an example of an odd modular operad
morphism going from the moduli space operad to the endomorphism operad.

In Sect. 7.2 we introduced the Feynman transform of modular cooperads which
are objects dual to modular operads, in order to obtain an important class of odd
modular operads. As for Part I, the most relevant modular cooperads come from
dualizations of particular modular operads. The construction is an analogue of the
classical cobar construction for cyclic cooperads. Although we mentioned the cobar
construction at the beginning of the present section merely to motivate the Feynman
transform, it is of its own interest and we will comment on it later. Nevertheless, we
did not give a detailed description of the cobar construction. This can be recognized
as the genus zero part of the more general case of the Feynman transform. The
important point is Proposition 7.2 describing explicitly an algebra over the Feynman
transform of a modular cooperad.

In Sect. 8.2, the relevance of operads in the description of string field theory
became transparent. Here, the Feynman transform was applied to the case, when the
modular cooperad is the component-wise linear dual of a modular operad.11 In this
instance, a morphism from the Feynman transform into an odd modular operad can
be expressed directly using the structure of the original modular operad. It explicitly
leads immediately not only to a BV structure, see Theorem 8.1, on the space of
invariants (8.4), but also to a characterization of the corresponding morphism as a
solution to the quantum BV master equation on this space, see Theorem 8.2. The
BV bracket and Δ have their origins in the operadic operations of both the original
modular operad and the (odd modular) endomorphism operad, cf. Proposition 8.1.
The S(n, g)-part of the solution S to the master equation comes from evaluating the
morphism on the (dual) of the (n, g) dg-vector space component of the original
operad. We have met this through Part I. All decompositions of moduli spaces
mentioned there are examples. More concretely, let us consider, for instance, closed

11In various places in Part I we would refer to this as to a Feynman transform of the modular
operad itself. We will continue doing this also in the rest of this section.
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strings. The geometric vertices of the closed string theory ν
g
n define a solution to

the master equation (3.17) on the space of (invariant under the permutations of
punctures) chains on the moduli space of closed Riemann surfaces with punctures.
They are the same thing as a particular morphism from the Feynman transform of the
modular commutative operad to the odd modular operad of the chain complex on
the moduli space. A two-colored version of that construction combining modular
commutative and associative operads would give geometric vertices for the open-
closed string field theory.

The BV formalism, as it is know from textbooks, can be recognized as an
instance of Proposition 7.2 applied to a representation of the Feynman transform
of the modular commutative operad in Sect. 8.2. In this case, we obtain a loop
homotopy algebra as described in Theorem 8.3. In the physics language, fields
are coordinate functionals on the dg-vector space (V , d). These would correspond
to a full BV theory. The fields of degree 0 correspond to the original fields of
the starting quantum field theory, fields being of positive degrees, anti-field of
negative ones. Interaction vertices in the quantum BV action are the degree 0 totally
(graded) symmetric functions f g

n . The quantum BV master equation is recognized
in (8.37). Here, d corresponds to the BRST operator. The role of degree one d-closed
symmetric element

∑
s′i⊗ s′′i in (8.37) is twofold. In the first term on the right-hand

side of the equation, it gives the BV operator Δ. In the second one, it gives the BV
bracket {−,−}. It is the same quantum BV master equation as the equation satisfied
by the closed string field theory action in Part I, Sect. 3.4.

Obviously, a variant of Theorem 8.3 can be given in the case of modular
associative operad and the quantum open-closed operad, the latter leading to the
open-closed quantum BV master equation for action (5.1).

It should be now obvious, by looking at the g = 0 part of the above construction,
that representations of the cobar construction for cyclic operads give the ordinary
homotopy algebras. For example, in the case of the cyclic commutative operad
we get cyclic L∞-algebras whereas in the associative case we get cyclic A∞-
algebras. The corresponding algebraic structures are equivalent to solutions to the
corresponding classical BV master equations. These are the algebraic structures
discussed in relation to the point particle in Sect. 2.3 and in relation to classical
string field theories, for instance, in Sects. 3.6 and 4.2, cf. also Sect. 5.2 for the
classical open-closed case.

Finally, in Sect. 8.3, we reviewed IBL∞-algebras, a common generalization
of loop homotopy algebras and Lie bialgebras. They can also be understood as
algebras over the cobar construction of properads. We however limited ourselves to
their direct algebraic description without going into their properadic origins. They
are generalizations of loop homotopy algebras in the following sense: in place of
the second order, degree one, nilpotent differential operator h̄Δ + {S,−}, now we
consider higher order, degree one, nilpotent differential operators. Correspondingly
we have brackets with several inputs and outputs. In particular, we can have an
ordinary bracket and cobracket as in a Lie bialgebra. The IBL∞-algebras were
relevant to our discussion of the open-closed string field theory in Sect. 5.2.
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Although the IBL∞-algebras used there are very particular ones, the one describing
closed strings corresponds to a loop homotopy algebra and the one used to
incorporate the open strings is an ordinary IBL-algebra, the full open-closed string
field theory comprises their morphism in the IBL∞ world. If we write the action
as the sum Sc + Soc + So, where Sc and So are the closed and open parts of
the action, respectively, this morphism corresponds to the vertices in the Soc part.
Complementary to our description of IBL∞ in Part II, we reviewed them also in
Appendix A in a form directly used in our physics discussion of Part I.
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