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1. I�����������

Here are two seemingly unrelated problems:

Problem 1. Compute explicitly some homotopy groups of spheres with coe�cients in Fp.

Problem 2. De�ne a tensor product of Fukaya categories in symplectic topology, by explicit formulas.

Suprisingly, solving both problems involve finding a cellular approximation of the diag-
onal of a family of polytopes, and describing its cellular image combinatorially. This is
what I have done in my thesis. My results apply to any family of polytopes, they can thus
be used to solve both Problem 1 and Problem 2 (see Section 3.3 and Section 4.3), among
others. They give rise to new geometric and combinatorial objects, which appear to be of
independent interest.

2. R����� �������

2.1. The diagonal of the operahedra. My initial motivation in [13] came from the theory
of operads. I wanted to solve the following problem.

Problem 3. De�ne a tensor product of operads up to homotopy.

This is the generalization of a smaller problem, that I will describe now, and which still
conveys the essential ideas.

An A1-algebra is an algebra where the associativity relation holds only up to homotopy.
More precisely, it is a graded vector space A together with operations µn : A

⌦n ! A , n � 1
of degree n � 2 which satisfy the A1-relations

[µ1, µn] =
X

p+q+r=n

2qn�1

±µp+q+r(id⌦p ⌦ µq ⌦ id⌦r) .

Thes relations say that µ1 is a di�erential, µ2 is a product, and µ3 is an homotopy between
µ2(µ2 ⌦ id) and µ2(id⌦ µ2). The higher µn’s are homotopies between homotopies, ensuring
coherence.

Problem 4. Given two A1-algebras (A, {µn}) and (B, {⌫n}), endow their tensor product A ⌦ B

with an A1-algebra structure.

This problem is non-trivial. To solve it, one has to design, out of the µn and ⌫n, a family
of operations ⇢n : (A ⌦ B)⌦n ! A ⌦ B which satisfy the A1-relations.

It turns out that the operad A1, which encodes A1-algebras, admits a description in
terms of a family of polytopes called associahedra. First introduced by Stashe� [24], the
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(n � 2)-dimensional associahedron has its faces bijectively labeled by planar trees with n

leaves. Problem 4 can thus be tackled by more conceptual means as follows.

For a polytope P, the image of the set-theoretic diagonal 4P : P ! P ⇥ P, x 7! (x, x)
is not a union of faces of P ⇥ P (in red below). A cellular approximation is a cellular map
4cell

P
: P ! P ⇥ P which is homotopic to 4P (in blue).

•
0

•
1

�!
•(0, 0) •(1, 0)

•(1, 1)•(0, 1)

Proposition 1. Suppose that we are able to de�ne a cellular approximation of the diagonal for the
associahedra, and endow them with a compatible operad structure. Then, under the cellular chains
functor, we get a functorial tensor product of A1-algebras.

This proposition is not hard to prove, but finding the approximations and the operad
structure is. To get explicit formulas for the tensor product, one needs an explicit descrip-
tion of the cellular image of the diagonal. Masuda–Tonks–Thomas–Vallette used in [16]
this approach to solve Problem 4, recovering the formulas previously obtained by hand in
[23, 15]. To do so, they introduced a new method coming from the theory of fiber polytopes
of Billera-Sturmfels [3]. The operad structure that they define on the associahedra presents
a fractal character, and is uniquely determined by the diagonal.

As associahedra encode associative algebras up to homotopy, there is a larger family
of polytopes which encodes operads up to homotopy. I called them operahedra. They
include both the associahedra and the permutahedra, which are polytopes whose faces are
in bijection with ordered partitions of {1, . . . , n}. In fact, the operahedra are all generalized
permutahedra, in the sense of Postnikov [21].

To define the tensor product of two operads up to homotopy, i.e. to solve Problem 3, I
followed the same thread of thought. However, the simple and elegant formula of [15, 16]
for the diagonal of the associahedra does not admit a straightforward generalization.

Refining the method of [16], I developed a general theory of cellular approximations of
the diagonal for families of polytopes. My first contribution is a universal formula describing
combinatorially the cellular image of such an approximation, for any family of polytopes.
It is expressed in terms of a new conceptual object associated to a polytope: its fundamental
hyperplane arrangement HP.
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Given any vector ~v in a chamber of the fundamental hyperplane arrangement HP of P,
the theorem says that a pair of faces (F,G) of P is in the cellular image of the cellular
approximation of the diagonal 4(P,~v) if and only if their normal vectors ~Fi, ~Gj satisfy a
certain condition with respect to the normal vectors ~dH of the hyperplanes H 2 HP.

Theorem 1 (Universal formula [13, Theorem 1.23]). Let (P,~v) be a positively oriented polytope
in Rn. For each H 2 HP, we choose a normal vector ~dH such that h ~dH,~vi > 0. We have

(F,G) 2 Im4(P,~v) () 8H 2 HP, 9 ~Fi, h~Fi, ~dHi < 0 or 9~Gj, h~Gj, ~dHi > 0 .

My second contribution is to apply this formula to the operahedra, and to define an
operad structure on them. This case presents more degrees of freedom, and I had to make
a coherent choice of approximations.

Theorem 2 (Operad structure [13, Theorem 4.18]). There exists a coherent choice of approxi-
mations of the diagonal which forces an operad structure on the operahedra.

This allowed me to define a functorial tensor product of two homotopy operads. Theo-
rem 1 then gave a very explicit, combinatorial formula for this tensor product [13, Propo-
sition 4.27]. This formula, which is fundamentally expressed as pairs of ordered partitions
of {1, . . . , n}, appears to be of independent interest.

Moreover, a general geometric argument [13, Proposition 1.30] shows that this formula
can in fact by applied mutatis mutandis to any generalized permutahedron. This prompts
immediate applications to modular operads up to homotopy [29], multiplihedra (see Sec-
tion 3.3) and many other algebraic structures up to homotopy [2].

3. W��� �� ��������

3.1. Möbius inversion and Koszul duality. Nir Gadish introduced recently a far-reaching
generalization of the Möbius inversion formula in the context of homotopy theory [9]. Ap-
plying his machinery to a presheaf on a category of trees, we are working on recovering
Koszul duality as defined in [10]. The additional combinatorial information provided by his
construction prompts a generalization of the operadic partition posets of Vallette [27] out-
side the set-theoretical world. This could lead to a generalization of the Cohen-Macaulay
property, and a new combinatorial criterion for proving that an (1-)operad is Koszul.
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3.2. Fiber polytopes and the Steenrod construction. The fundamentally new idea of
[16] is the following: for a polytope P, every vertex of the fiber polytope ⌃(P ⇥ P, P) as-
sociated to the projection P ⇥ P ! P, (x, y) 7! (x + y)/2 gives a cellular approximation
of the diagonal of P. Such an approximation is not invariant under the transposition of
the coordinates (x, y) 7! (y, x). In the case of the simplices, Steenrod constructed in [26] a
tower of homotopies controlling this lack of commutativity. In a joint work with Anibal M.
Medina-Mardones, we construct such a tower for any polytope by means of iterated fiber
polytopes, as in the works of Kapranov, Billera and Sturmfels [4, 5]. We are now working
on defining explicit models in higher category theory, following Kapranov–Voevodsky [28]
and Medina-Mardones [19].

3.3. The diagonal of the multiplihedra and the tensor product of A1-categories. In
order to define the tensor product of Fukaya A1-categories in symplectic topology, for
example the category of products of symplectic manifolds, one needs both a tensor product
of A1-algebras and a compatible tensor product of A1-morphisms [14]. This construction
is given by a cellular approximation of another family of polytopes, first introduced by J.
Stashe�: the multiplihedra [25, 8, 18].

The multiplihedra are, like the operahedra, part of the family of generalized permutahe-
dra [1]. As mentioned at the end of Section 2.1, one can apply mutatis mutandis the formula
obtained in [13]. In a current work with Thibaut Mazuir and Naruki Masuda, we are work-
ing on the following theorem. Taking cellular chains, this would be the first instance of a
tensor product of A1-categories, defined by explicit formulas.

Expected result 1. The preceding choices of diagonals endow the multiplihedra with a compatible
bimodule structure over the associahedra.

4. F����� ��������

4.1. Quillen homology of con�guration spaces. In a recent paper [30], Adela Y. Zhang
introduces a general method to compute the mod 2 André-Quillen homology of spectral
Lie algebras, and applies it to compute the mod 2 homology of configuration of points
in a parallelizable manifold. In the case where this manifold is Rn, she makes a precise
conjecture about higher di�erentials in a certain spectral sequence [30, Conjecture 5.7].

This conjecture could be solved by conceptual means, as follows. As suggested in the
accompanying remark [30, Remark 5.8], the spectral sequence arises from the bar-cobar
resolution of the spectral Lie operad. This is the analogue of a spectral sequence of May
[17] for associative algebras, where higher di�erentials correspond to Massey products, i.e.
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to an A1-algebra structure. In the case of the spectral Lie operad, they should correspond to
operadic Massey products, i.e. to an O1-algebra structure, where the operad O1 is encoded
by the operahedra of Section 2.1.

In fact, one would need a version of O1 taking both symmetric group actions (this was
done in [7]) and power operations (since we are working over F2) into account. First steps
in this direction are made in [11]. Understanding the O1 structure on the singular chains
of the spectral Lie operad would then allow for an explicit computation, via the homotopy
transfer theorem, of the desired operadic Massey products.

4.2. Associativity in A1-categories. What is the "monoidal" structure formed by A1-
algebras and their A1-morphisms? A first step to answer this question is to understand
the "up to homotopy" coassociativity of the diagonal of the associahedra. Indeed, by a
result of Markl and Schnider [15, Section 6], a strictly coassociative diagonal does not
exist. The idea would be to construct a family of homotopy coherent "higher diagonals"
4n : C•(P) ! C•(P)⌦n resolving the lack of coassociativity of 42. I see three di�erent
approaches to perform this construction.

(1) Use iterated fiber polytopes, as for the Steenrod diagonal in Section 3.2.
(2) Define geometrically the retraction of Markl-Schnider [15] and apply the homotopy

transfer theorem between the minimal and bar-cobar resolutions of the assocative
operad.

(3) Restrict the operadic construction of [20, Chapter 4] to a certain class of coherent
sequences of faces, as in [5].

4.3. Homotopy groups of spheres: the un�nished symphony of Alain Prouté. In
his Ph. D. thesis [22], Alain Prouté pursues the goal of computing explicitly the mod p

homology of fibered spaces by means of A1-structures, a technique initiated by Kadeishvili
in [12], whose ideas go back to Brown [6]. Given a principal fibration G ! E ! X , the idea
is to go around Serre’s spectral sequence and compute directly the homology of E in terms
of the homology of the twisted tensor product H•(X) ⌦t H•(G), where H•(X) is endowed
with a A1-coalgebra structure [22, Theorem 5.14].

Prouté treats the case where the fiber is an Eilenberg-MacLane space K(Z/p, n). He is able
to do part of the computation, but he has to stop because he needs an explicit formula for
the tensor product of A1-coalgebras. Using Hurewicz’s theorem, this explicit computation
would give a way to determine iteratively homotopy groups of spheres.

As we have seen in Section 2.1, the problem of defining the tensor product of two A1-
coalgebras (or equivalently two A1-algebras) has been solved since the early 2000’s [23, 15].
However, to my knowledge, nobody has continued Prouté’s computations. This is probably
due to the fact that the formula for the tensor product of two A1-algebras, in its actual
form, is not very amenable to computations. The new combinatorial description obtained
in [13], via the universal formula, could provide the missing tool.

Objective 1. Compute explicitly some mod p homotopy groups of spheres with the help of the new
combinatorial description of the diagonal of the associahedra obtained in [13].
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