Steenrod operations via higher Bruhat orders

Guillaume Laplante-Anfossi, j/w Nicholas J. Williams

The University of Melbourne

NMSU Geometry & Topology Seminar - December 1, 2023

Table of contents

1 Introduction

2 Higher Bruhat orders

3 Steenrod operations

Table of contents

1 Introduction

2 Higher Bruhat orders

3 Steenrod operations

Cellular diagonals

Consider the standard simplex \mathbb{A}^n in \mathbb{R}^{n+1} . The diagonal

$$\Delta : \mathbb{A}^n \to \mathbb{A}^n imes \mathbb{A}^n \ x \mapsto (x, x)$$

is not cellular.

Cellular diagonals

Consider the standard simplex \mathbb{A}^n in \mathbb{R}^{n+1} . The diagonal

$$egin{array}{rcl} \Delta & : & \mathbb{A}^n & o & \mathbb{A}^n imes \mathbb{A}^n \ & x & \mapsto & (x,x) \end{array}$$

is not cellular.

Cellular diagonals

One is thus looking for a *cellular approximation*

Cellular diagonals

One is thus looking for a *cellular approximation* (blue above/red below)

Alexander–Whitney diagonal

One such approximation is given by the *Alexander–Whitney map*.

 $\Delta_0(01) \ = \ 0\otimes 01 + 01\otimes 1$

Alexander–Whitney diagonal

One such approximation is given by the *Alexander–Whitney map*.

 $\Delta_0(01) = 0 \otimes 01 + 01 \otimes 1$

However, choosing such a map one breaks the S_2 symmetry of Δ .

 $T\Delta_0(01) = 01\otimes 0 + 1\otimes 01$

Alexander–Whitney diagonal

One such approximation is given by the *Alexander–Whitney map*.

 $\Delta_0(01) \ = \ 0\otimes 01 + 01\otimes 1$

However, choosing such a map one breaks the S_2 symmetry of Δ .

 $T\Delta_0(01) = 01\otimes 0 + 1\otimes 01$

Steenrod squares

N. E. Steenrod resolves homotopically this symmetry break by a family of *cup-i coproducts*

$$\Delta_i \colon C_{\bullet}(\mathbb{A}^n) \to C_{\bullet}(\mathbb{A}^n) \otimes C_{\bullet}(\mathbb{A}^n)$$

Steenrod squares

N. E. Steenrod resolves homotopically this symmetry break by a family of *cup-i coproducts*

$$\Delta_i \colon \operatorname{\mathsf{C}}_{ullet}(\mathbb{A}^n) \to \operatorname{\mathsf{C}}_{ullet}(\mathbb{A}^n) \otimes \operatorname{\mathsf{C}}_{ullet}(\mathbb{A}^n)$$

which satisfy the homotopy formula

$$\partial \Delta_i - (-1)^i \Delta_i \partial = (1 + (-1)^i T) \Delta_{i-1} \; .$$

That is, each Δ_i is an homotopy between Δ_{i-1} and $T\Delta_{i-1}$.

Steenrod squares

N. E. Steenrod resolves homotopically this symmetry break by a family of *cup-i coproducts*

$$\Delta_i\colon \operatorname{\mathsf{C}}_{\bullet}(\mathbb{A}^n)\to\operatorname{\mathsf{C}}_{\bullet}(\mathbb{A}^n)\otimes\operatorname{\mathsf{C}}_{\bullet}(\mathbb{A}^n)$$

which satisfy the homotopy formula

$$\partial \Delta_i - (-1)^i \Delta_i \partial = (1 + (-1)^i T) \Delta_{i-1} \; .$$

That is, each Δ_i is an homotopy between Δ_{i-1} and $T\Delta_{i-1}$. These give rise to *Steenrod squares*

$$\operatorname{Sq}_i \colon H^p(X; \mathbb{Z}/2\mathbb{Z}) \to H^{2p-i}(X; \mathbb{Z}/2\mathbb{Z}).$$

Steenrod "square"

Table of contents

+01234 @ 4 ~01234 @ 0 $+01234 \otimes 04$ 0123 1234 +124 @ 034 +0123 B 04 Introduction 124 @ 034 -0123 & 04 +0123 & 34 +0123 B _0123 @ 14 123-~0123®014 $-1234 \otimes 014$ $-0123 \otimes 134$ 012 123 0 Higher Bruhat orders 123 B 023 .24 @ 0134 Q. +023 @ 014 9 24 @ 0134 $+012 \otimes 234$ -023 @ 014 -234 @ 013 +023 ® 134 +012 @ 134 023 @ 134 _012 @ 13A 23 $+2^{34} \otimes 0^{134}$ +012@1234 +234 & 0123 $-023\otimes0134$ 01 Steenrod operations -23 @ 0134 +23 & 0134 02 24 -24 ⁽¹⁾ 0134 .02 @ 0134 +01 @ 1234 $\begin{array}{c} -02 \otimes 1234 \\ +02 \otimes 1234 \end{array}$ +24 @ 0134 +02 @ 0134 $+24 \otimes 0123$ $-24 \otimes 0123$

01234

+1234 @ 01

+234 & 013

*34 & 0123

 $-24\otimes 01234$

-4 € 01234

 $-02\otimes 01234$

+0 \$ 01234

 $-2\otimes 01234$ $+2 \otimes 01234$

ø

0

234

 $234 \otimes 012$

34

Packets

For
$$i + 2 \leq n$$
, we write $\binom{[0,n]}{i+1} := \{S \subset [0,n] \mid |S| = i+1\}.$

Definition

The *packet* of
$$K = \{k_0 < k_2 < \cdots < k_{i+1}\} \in {[0,n] \choose i+2}$$
 is the set

 $P(K) := \{K \setminus k \mid k \in K\}$

Packets

For
$$i + 2 \leq n$$
, we write $\binom{[0,n]}{i+1} := \{S \subset [0,n] \mid |S| = i+1\}.$

Definition

The *packet* of
$$K = \{k_0 < k_2 < \cdots < k_{i+1}\} \in {[0,n] \choose i+2}$$
 is the set

$$P(K) := \{K \setminus k \mid k \in K\}$$

It is naturally ordered by the *lexicographic order*, where $K \setminus k_p < K \setminus k_q$ if and only if p < q, or its opposite, the *reverse lexicographic order*.

Packets

For
$$i + 2 \leq n$$
, we write $\binom{[0,n]}{i+1} := \{S \subset [0,n] \mid |S| = i+1\}.$

Definition

The *packet* of
$$K = \{k_0 < k_2 < \cdots < k_{i+1}\} \in {[0,n] \choose i+2}$$
 is the set

$$P(K) := \{K \setminus k \mid k \in K\}$$

It is naturally ordered by the *lexicographic order*, where $K \setminus k_p < K \setminus k_q$ if and only if p < q, or its opposite, the *reverse lexicographic order*.

Example

The packet of 012 is $\{01, 02, 12\}$, lex is 01 < 02 < 12. The packet of 023 is $\{02, 03, 23\}$, rex is 23 < 03 < 02.

Admissible orders

Definition

- A total order α of $\binom{[0,n]}{i+1}$ is *admissible* if for all $K \in \binom{[0,n]}{i+2}$, the elements P(K) appear in either lexicographic or reverse-lexicographic order under α .
- 2 Two orderings α and α' of (^[0,n]_{i+1}) are *equivalent* if they differ by a sequence of interchanges of pairs of adjacent elements that do not lie in a common packet.

Admissible orders

Definition

- **1** A total order α of $\binom{[0,n]}{i+1}$ is *admissible* if for all $K \in \binom{[0,n]}{i+2}$, the elements P(K) appear in either lexicographic or reverse-lexicographic order under α .
- 2 Two orderings α and α' of (^[0,n]_{i+1}) are *equivalent* if they differ by a sequence of interchanges of pairs of adjacent elements that do not lie in a common packet.

Example

Consider the order 01 < 23 < 03 < 13 < 02 < 12 of $\binom{[0,3]}{2}$. It is admissible since P(012), P(013) in lex and P(023), P(123) in rex. It is equivalent to 23 < 01 < 03 < 13 < 02 < 12.

Higher Bruhat orders

Definition

The elements of the *higher Bruhat poset* $\mathcal{B}([0, n], i + 1)$ are admissible orders of $\binom{[0,n]}{i+1}$, modulo equivalence.

Higher Bruhat orders

Definition

The elements of the *higher Bruhat poset* $\mathcal{B}([0, n], i + 1)$ are admissible orders of $\binom{[0,n]}{i+1}$, modulo equivalence.

The *inversion set* $inv(\alpha)$ of an admissible order α is the set of all (i+2)-subsets of [0, n] whose packets appear in rex.

Higher Bruhat orders

Definition

The elements of the *higher Bruhat poset* $\mathcal{B}([0, n], i + 1)$ are admissible orders of $\binom{[0,n]}{i+1}$, modulo equivalence.

The *inversion set* $inv(\alpha)$ of an admissible order α is the set of all (i+2)-subsets of [0, n] whose packets appear in rex.

Example

The inversion set of $\alpha = 01 < 23 < 03 < 13 < 02 < 12 \in \mathcal{B}([0,3],2)$ is $inv(\alpha) = \{023, 123\}.$

Higher Bruhat orders

Definition

The elements of the *higher Bruhat poset* $\mathcal{B}([0, n], i + 1)$ are admissible orders of $\binom{[0,n]}{i+1}$, modulo equivalence. The poset structure is generated by the covering relations given by $[\alpha] \leq [\alpha']$ if $inv(\alpha') = inv(\alpha) \cup \{K\}$ for $K \in \binom{[0,n]}{i+2} \setminus inv(\alpha)$.

Higher Bruhat orders

Definition

The elements of the *higher Bruhat poset* $\mathcal{B}([0, n], i + 1)$ are admissible orders of $\binom{[0,n]}{i+1}$, modulo equivalence. The poset structure is generated by the covering relations given by $[\alpha] \leq [\alpha']$ if $\operatorname{inv}(\alpha') = \operatorname{inv}(\alpha) \cup \{K\}$ for $K \in \binom{[0,n]}{i+2} \setminus \operatorname{inv}(\alpha)$.

Example

$[01 < 02 < 03 < 23 < 13 < 12] \lessdot [01 < 23 < 03 < 13 < 02 < 12]$

Higher Bruhat orders

Definition

The elements of the *higher Bruhat poset* $\mathcal{B}([0, n], i + 1)$ are admissible orders of $\binom{[0,n]}{i+1}$, modulo equivalence. The poset structure is generated by the covering relations given by $[\alpha] \leq [\alpha']$ if $inv(\alpha') = inv(\alpha) \cup \{K\}$ for $K \in \binom{[0,n]}{i+2} \setminus inv(\alpha)$.

Example

 $[01 < 02 < 03 < 23 < 13 < 12] \lessdot [01 < 23 < 03 < 13 < 02 < 12]$

• Lex is unique minimum for \leq , and rex is unique maximum.

Properties

Theorem (Manin–Schechtman, 1989)

There is a bijection between elements of $\mathcal{B}([0, n], i + 2)$ and equivalence classes of maximal chains in $\mathcal{B}([0, n], i + 1)$.

Properties

Theorem (Kapranov–Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of $\mathcal{B}([0, n], i + 1)$ and cubillages of the zonotope Z([0, n], i + 1).

Properties

Theorem (Kapranov–Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of $\mathcal{B}([0, n], i + 1)$ and cubillages of the zonotope Z([0, n], i + 1).

Cubillages of Z([0, 3], 2) related by a flip.

Properties

Theorem (Kapranov–Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of $\mathcal{B}([0, n], i + 1)$ and cubillages of the zonotope Z([0, n], i + 1).

Same cubillages indexed by initial vertices and generating vectors.

Table of contents

1 Introduction

2 Higher Bruhat orders

3 Steenrod operations

Steenrod coproducts

Steenrod coproducts

An overlapping partition $\mathcal{L} = (L_0, L_1, \dots, L_{i+1})$ of [0, n] is a family of intervals $L_p = [l_p, l_{p+1}]$ such that $l_0 = 0$, $l_{i+2} = n$, and for each $0 we have <math>l_p < l_{p+1}$.

Definition

For $i \ge -1$, the *Steenrod cup-i coproduct* is the chain map $\Delta_i \colon C_{\bullet}(\mathbb{A}^n) \to C_{\bullet}(\mathbb{A}^n) \otimes C_{\bullet}(\mathbb{A}^n)$ defined by

$$\Delta_i([0,n]) := \sum_{\mathcal{L}} (-1)^{\varepsilon(\mathcal{L})} (L_0 \cup L_2 \cup \cdots) \otimes (L_1 \cup L_3 \cup \cdots)$$

where the sum is over all overlapping partitions of [0, n] into i + 2 intervals.

Steenrod coproducts

Example

For the 0-simplex \mathbb{A}^0 , we have $\Delta_0(0) = 0 \otimes 0$. For the 1-simplex \mathbb{A}^1 ,

$$\Delta_0(01) = 0 \otimes 01 + 01 \otimes 1 ,$$

$$\Delta_1(01) = -01 \otimes 01 .$$

For the 2-simplex \mathbb{A}^2 , we have

$$\begin{split} \Delta_0(012) &= 0 \otimes 012 + 01 \otimes 12 + 012 \otimes 2 \ , \\ \Delta_1(012) &= 012 \otimes 01 - 02 \otimes 012 + 012 \otimes 12 \ , \\ \Delta_2(012) &= 012 \otimes 012 \ . \end{split}$$

Cubical subcomplex

The key observation is the following.

Cubical subcomplex

The key observation is the following.

Proposition

There is a bijection between faces of Z(S, |S|) excluding \emptyset and S and basis elements of $C_{\bullet}(\mathbb{A}^n) \otimes C_{\bullet}(\mathbb{A}^n)$ which are supported on S.

$$A \otimes P \qquad A \cup P = [o_1 n]$$

[0, h]=5

Cubical subcomplex

The key observation is the following.

Proposition

There is a bijection between faces of Z(S, |S|) excluding \emptyset and S and basis elements of $C_{\bullet}(\mathbb{A}^n) \otimes C_{\bullet}(\mathbb{A}^n)$ which are supported on S.

Two cubillages indexed by initial vertices and generating vectors.

Cubical subcomplex

The key observation is the following.

Proposition

There is a bijection between faces of Z(S, |S|) excluding \emptyset and S and basis elements of $C_{\bullet}(\mathbb{A}^n) \otimes C_{\bullet}(\mathbb{A}^n)$ which are supported on S.

The same cubillages indexed by basis elements of $C_{\bullet}(\mathbb{A}^3) \otimes C_{\bullet}(\mathbb{A}^3)$.

Main results

We are now in position to connect higher Bruhat orders and Steenrod coproducts.

We are now in position to connect higher Bruhat orders and Steenrod coproducts.

Theorem (L.-A.–Williams, 2023)

For every element $U = inv(\alpha) \in \mathcal{B}([0, n], i + 1)$, there is a coproduct

$$\Delta_i^U: \ \mathsf{C}_{\bullet}(\mathbb{A}^n) \to \mathsf{C}_{\bullet}(\mathbb{A}^n) \otimes \mathsf{C}_{\bullet}(\mathbb{A}^n)$$

which gives a homotopy between Δ_{i-1} and Δ_{i-1}^{op} . If U_{\min} and U_{\max} are the maximal and minimal elements of $\mathcal{B}([0, n], i+1)$, then $\{\Delta_i^{U_{\min}}, \Delta_i^{U_{\max}}\} = \{\Delta_i, \Delta_i^{op}\}.$

$$\Delta_{i}^{op} = T \Delta_{i}$$

We are now in position to connect higher Bruhat orders and Steenrod coproducts.

Theorem (L.-A.–Williams, 2023)

For every element $U = inv(\alpha) \in \mathcal{B}([0, n], i + 1)$, there is a coproduct

$$\Delta_i^U: \ \mathsf{C}_{\bullet}(\mathbb{A}^n) \to \mathsf{C}_{\bullet}(\mathbb{A}^n) \otimes \mathsf{C}_{\bullet}(\mathbb{A}^n)$$

which gives a homotopy between Δ_{i-1} and Δ_{i-1}^{op} . If U_{\min} and U_{\max} are the maximal and minimal elements of $\mathcal{B}([0, n], i+1)$, then $\{\Delta_i^{U_{\min}}, \Delta_i^{U_{\max}}\} = \{\Delta_i, \Delta_i^{op}\}.$

Moreover, every coproduct on C_●(Δⁿ) giving a homotopy between Δ_{i-1} and Δ^{op}_{i-1} arises in this way, so long as it does not contain redundant terms.

Main results

It follows that from any covering relation U ≤ V in B([0, n], i + 1), one can construct a chain homotopy between Δ^U_i and Δ^V_i.

• It follows that from any covering relation $U \leq V$ in $\mathcal{B}([0, n], i + 1)$, one can construct a chain homotopy between Δ_i^U and Δ_i^V .

Theorem (L.-A.–Williams, 2023)

Any coproduct Δ_i^U defines a Steenrod square Sq_i^U in the cohomology of a simplicial complex, and for any two $U, V \in \mathcal{B}([0, n], i + 1)$ we have $Sq_i^U = Sq_i^V$.

• It follows that from any covering relation $U \leq V$ in $\mathcal{B}([0, n], i + 1)$, one can construct a chain homotopy between Δ_i^U and Δ_i^V .

Theorem (L.-A.–Williams, 2023)

Any coproduct Δ_i^U defines a Steenrod square Sq_i^U in the cohomology of a simplicial complex, and for any two $U, V \in \mathcal{B}([0, n], i + 1)$ we have $Sq_i^U = Sq_i^V$.

We show that

 for cohomology of simplicial complexes non-trivial coproducts from different elements of the higher Bruhat orders exist,

• It follows that from any covering relation $U \leq V$ in $\mathcal{B}([0, n], i + 1)$, one can construct a chain homotopy between Δ_i^U and Δ_i^V .

Theorem (L.-A.–Williams, 2023)

Any coproduct Δ_i^U defines a Steenrod square Sq_i^U in the cohomology of a simplicial complex, and for any two $U, V \in \mathcal{B}([0, n], i + 1)$ we have $Sq_i^U = Sq_i^V$.

We show that

- for cohomology of simplicial complexes non-trivial coproducts from different elements of the higher Bruhat orders exist,
- whereas for singular cohomology only the Steenrod coproducts are possible.

Construction

For $U \in \mathcal{B}([0, n], i+1)$ and a set of generating vectors $L \in {[0, n] \choose i+1}$, we define $A_L^U \subset [0, n] \setminus L$, by asserting that $a \in [0, n] \setminus L$ is in A_L^U if and only if either

• $L \cup \{a\} \in U$ and a is an even gap, or

• $L \cup \{a\} \notin U$ and a i an odd gap.

Here, a is an even (odd) gap if $\#\{I \in L \mid a < I\}$ is even (odd).

Construction

For $U \in \mathcal{B}([0, n], i+1)$ and a set of generating vectors $L \in {[0, n] \choose i+1}$, we define $A_L^U \subset [0, n] \setminus L$, by asserting that $a \in [0, n] \setminus L$ is in A_L^U if and only if either

- $L \cup \{a\} \in U$ and *a* is an even gap, or
- $L \cup \{a\} \notin U$ and a i an odd gap.

Here, a is an even (odd) gap if $\#\{I \in L \mid a < I\}$ is even (odd).

Definition

We define the cup-*i* coproduct $\Delta_i^U \colon C(\mathbb{A}^n) \to C(\mathbb{A}^n) \otimes C(\mathbb{A}^n)$ by the formula

$$\Delta_i^U([0,n]) := \sum_{L \in \binom{[0,n]}{i+1}} \pm L \cup A_L^U \otimes L \cup B_L^U,$$

where $B_L^U := [0, n] \setminus (L \cup A_L^U)$.

Proof of the homotopy formula

Proposition

For any
$$U \in \mathcal{B}([0, n], i + 1)$$
, we have
 $\partial \Delta_i^U - (-1)^i \Delta_i^U \partial = (1 + (-1)^i T) \Delta_{i-1}$.

Proof of the homotopy formula

Proposition

For any
$$U \in \mathcal{B}([0, n], i + 1)$$
, we have
 $\partial \Delta_i^D - (-1)^i \Delta_i^U \partial = (1 + (-1)^i T) \Delta_{i-1}$.

Proof.

When we expand $\partial \Delta_i^U$ we see that terms from shared facets of cubes lying inside Z([0, n], i + 1) cancel, and that we are left with terms of the form $F \setminus k$ and terms corresponding to Δ_i and $T\Delta_i$. The former terms cancel with those from $(-1)^i \Delta_i^U \partial$.

Proof of the homotopy formula

Conclusion

Thank you for your attention!