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Introduction

Cellular diagonals

Consider the standard simplex A” in R"*1. The diagonal

A A" — A"XA"
x = (x,x)

is not cellular.
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Cellular diagonals

Introduction

One is thus looking for a cellular approximation

A

[ ]

(0.1)

A

(1.1)

(0.0)

(1.0)
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Introduction

Cellular diagonals

One is thus looking for a cellular approximation (blue above/red below)

(0,1) (1L.1)
—
0 1 i (0,0) (1,0)
11 11
01 21 01 21
12 12
02 22 02 22
10 10
00 20 00 20
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Introduction

Alexander—Whitney diagonal

One such approximation is given by the Alexander—\Whitney map.

Ng(01) = 0®01+01®1

6/ 27



Introduction

Alexander—Whitney diagonal

One such approximation is given by the Alexander—\Whitney map.
Ap(0l) = 0®01+01®1
However, choosing such a map one breaks the Sy symmetry of A.

TAp(01) = 01®0+1®01
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Alexander—Whitney diagonal

One such approximation is given by the Alexander—\Whitney map.
Ap(0l) = 0®01+01®1
However, choosing such a map one breaks the Sy symmetry of A.

TAp(01) = 01®0+1®01
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Introduction

Steenrod squares

N. E. Steenrod resolves homotopically this symmetry break by a family of
cup-i coproducts

A Co(A") — Co(A™) ® Co(A™)
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cup-i coproducts
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which satisfy the homotopy formula
OA; — (1) A0 = (14 (-1)'T)A_; .

That is, each A; is an homotopy between A;_1 and TA,;_;.
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Introduction

Steenrod squares

N. E. Steenrod resolves homotopically this symmetry break by a family of
cup-i coproducts

A Co(A") — Co(A™) ® Co(A™)
which satisfy the homotopy formula
OA; — (1) A0 = (14 (-1)'T)A_; .

That is, each A; is an homotopy between A;_1 and TA;_1. These give
rise to Steenrod squares

Sq;: HP(X;Z/2Z) — H*~/(X;Z/22Z).

7/27



Introduction

Steenrod “square”

012® 0
01 ® 2
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Higher Bruhat orders

Packets

For i + 2 < n, we write ([0"]) ={SC[0,n]||S|=i+1}.

The packet of K = {kyp < kn < --- < kjz1} € ([O ”]) is the set

P(K) ={K\ k| ke K}
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It is naturally ordered by the lexicographic order, where K\ k, < K\ kq if
and only if p < g, or its opposite, the reverse lexicographic order.
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Higher Bruhat orders

Packets

For i + 2 < n, we write ([0"]) ={SC[0,n]||S|=i+1}.

The packet of K = {kyp < kn < --- < kjz1} € ([O ”]) is the set

P(K) ={K\ k| ke K}

y

It is naturally ordered by the lexicographic order, where K\ k, < K\ kq if
and only if p < g, or its opposite, the reverse lexicographic order.

The packet of 012 is {01,02,12}, lex is 01 < 02 < 12.
The packet of 023 is {02,03,23}, rex is 23 < 03 < 02.
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Higher Bruhat orders

Admissible orders

@ A total order o of ([1'1]) is admissible if for all K € ([O ”]) the
elements P(K) appear in either lexicographic or reverse-lexicographic

order under «.

@ Two orderings « and o/ of ([I.Ojrq]) are equivalent if they differ by a

sequence of interchanges of pairs of adjacent elements that do not lie
in a common packet.
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Higher Bruhat orders

Admissible orders

@ A total order a of ([(:Lq]) is admissible if for all K € ([O "]) the
elements P(K) appear in either lexicographic or reverse-lexicographic

order under «.

@ Two orderings « and o’ of ([I.Ojrq]) are equivalent if they differ by a

sequence of interchanges of pairs of adjacent elements that do not lie
in a common packet. ]
Consider the order 01 </23 < 03 < 13 < 02 < 12 of ([0 3])

It is admissible since P(012) P(013) in lex and “P(023), P(123) in rex.
It is equivalent t0 23 <01 < 03 < 13 < 02 < 12. Y™ N

A\
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Higher Bruhat orders

Higher Bruhat orders

Definition

The elements of the higher Bruhat poset B([0, n], i + 1) are admissible
orders of ([I.OJ’FZ]), modulo equivalence.
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Higher Bruhat orders

Definition

The elements of the higher Bruhat poset B([0, n], i + 1) are admissible
[0,n]

orders of (i+1)’ modulo equivalence.

The inversion set inv(a) of an admissible order « is the set of all
(i + 2)-subsets of [0, n] whose packets appear in rex.
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Higher Bruhat orders

Higher Bruhat orders

Definition

The elements of the higher Bruhat poset B([0, n], i + 1) are admissible
[0,n]

i1 ) , modulo equivalence.

orders of (

The inversion set inv(a) of an admissible order « is the set of all
(i + 2)-subsets of [0, n] whose packets appear in rex.

The inversion set of « =01 <23 <03 <13 <02 <12 € B([0,3],2) is
inv(a) = {023,123}
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Higher Bruhat orders

Higher Bruhat orders

The elements of the higher Bruhat poset B([0, n],i + 1) are admissible
orders of ([I.OJ’FZ]), modulo equivalence. The poset structure is generated by
the covering relations given by [a] < [@/] if inv(a/) = inv(a) U {K} for

K e ([I.C:’L';]) \ inv(a).
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[01 <02<03<23<13<12]<[01<23<03<13<02<12]
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Higher Bruhat orders

Higher Bruhat orders

The elements of the higher Bruhat poset B([0, n],i + 1) are admissible
orders of ([I.OJ’FZ]), modulo equivalence. The poset structure is generated by
the covering relations given by [a] < [@/] if inv(a/) = inv(a) U {K} for

K e ([I.C:’L';]) \ inv(a).

[01 <02<03<23<13<12]<[01<23<03<13<02<12]

@ Lex is unique minimum for <, and rex is unique maximum.
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Higher Bruhat orders

Properties

Theorem (Manin—Schechtman, 1989)

There is a bijection between elements of B([0, n], i + 2) and equivalence
classes of maximal chains in B([0, n],i + 1).
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Higher Bruhat orders

Properties

Theorem (Kapranov—Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of B([0, n], i 4+ 1) and cubillages of
the zonotope Z([0, n],i + 1).
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Higher Bruhat orders

Properties

Theorem (Kapranov—Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of B([0, n], i 4+ 1) and cubillages of
the zonotope Z([0, n],i + 1).

Cubillages of Z(]0, 3],2) related by a flip.

15/ 27



Higher Bruhat orders

Properties

Theorem (Kapranov—Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of B([0, n],i + 1) and cubillages of
the zonotope Z([0, n],i +1).

6 €5

Same cubillages indexed by initial vertices and generating vectors.

Q

16 /27



Steenrod operations

Table of contents

01234

401234 ® 04

—1234 ® 014

012 234
3 |
a &
® -
g ®
3 2
< o
01 —023 ® 0134 34

© Steenrod operations

o /27



Steenrod operations

Steenrod coproducts

An overlapping partition L = (Lo, L1, ..., Liy1) of [0, n] is a family of
intervals L, = [lp, lp+1] such that Iy = 0, /i;2 = n, and for each

0<p<i+1wehavel, < lpt1. OI_)-__ﬁ OI n
!
vtz ol
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Steenrod operations

Steenrod coproducts

An overlapping partition L = (Lo, L1, ..., Liy1) of [0, n] is a family of
intervals L, = [/lp, Ip+1] such that [y =0, ;12 = n, and for each
O0<p<i+1wehavel, <lpy1.

For i > —1, the Steenrod cup-i coproduct is the chain map
Aj: Co(A") — Co(A™) ® Co(A™) defined by

Ai([0,n]) == (1) (LU LU )@ (LLULsU--+),
L

where the sum is over all overlapping partitions of [0, n] into i + 2 intervals.

v
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Steenrod operations

Steenrod coproducts

For the O-simplex A%, we have Ap(0) = 0® 0. For the 1-simplex Al

Ap(01) =0®01+01®1,
A1(01) = -01®01.
For the 2-simplex A2, we have
No(012) =0® 012+ 01 ® 12+ 012® 2, /\

A1(012) = 012 ® 01 — 02® 012 + 012 ® 12, |\/
A»(012) = 012® 012 . \‘ /

19/ 27



Steenrod operations

Cubical subcomplex

The key observation is the following.
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Steenrod operations

Cubical subcomplex

The key observation is the following. YP' h]: g
Proposition

There is a bijection between faces of Z(S, |S|) excluding @ and S and
basis elements of C4(A") ® Co4(A") which are supported on S.

A—@ Q’ Asztbln]
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Steenrod operations

Cubical subcomplex

The key observation is the following.

Proposition

There is a bijection between faces of Z(S, |S|) excluding @ and S and
basis elements of C4(A") @ C4(A") which are supported on S.

| >

Two cubillages indexed by initial vertices and generating vectors.
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Steenrod operations

Cubical subcomplex

The key observation is the following.

Proposition

There is a bijection between faces of Z(S,|S|) excluding & and S and
basis elements of C4(A") ® Co(A") which are supported on S.

%
Q\f)@l 0123 ® 02

075 123 ® 012
013® 123 ®,
72

03®0123

The same cubillages indexed by basis elements of Co(A3) @ C4(A3).
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Steenrod operations

Main results

We are now in position to connect higher Bruhat orders and Steenrod
coproducts.
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Steenrod operations

Main results

We are now in position to connect higher Bruhat orders and Steenrod
coproducts.

Theorem (L.-A.—Williams, 2023)

For every element U = inv(«) € B([0, n],i + 1), there is a coproduct

AY: Co(A™) — Co(A") ® Co(A™)

which gives a homotopy between A;_1 and AP . If Unin and Umax are the

maximal and minimal elements of B([0, n], i + 1), then
{Alymin, Alumax} — {A“A?p}

Ao? - TA.
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Steenrod operations

Main results

We are now in position to connect higher Bruhat orders and Steenrod
coproducts.

Theorem (L.-A.—Williams, 2023)

For every element U = inv(«) € B([0, n],i + 1), there is a coproduct

AY: Co(A™) — Co(A") ® Co(A™)

which gives a homotopy between A;_1 and AP . If Unin and Umax are the

maximal and minimal elements of B([0, n], i + 1), then
{Alymin, Alumax} — {A“A?p}

@ Moreover, every coproduct on C4(A") giving a homotopy between
Aj_1 and AP arises in this way, so long as it does not contain
redundant terms.
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Steenrod operations

Main results

o It follows that from any covering relation U < V in B([0, n], i + 1),
one can construct a chain homotopy between A,U and A,V.
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@ for cohomology of simplicial complexes non-trivial coproducts from
different elements of the higher Bruhat orders exist,
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Steenrod operations

Main results

o It follows that from any covering relation U < V in B([0, n], i + 1),
one can construct a chain homotopy between A,U and A,V.

Theorem (L.-A.—Williams, 2023)

Any coproduct A,U defines a Steenrod square Sq,u in the cohomology of a
simplicial complex, and for any two U,V € B([0, n],i + 1) we have
Sa7’ = Sa; .

We show that

@ for cohomology of simplicial complexes non-trivial coproducts from
different elements of the higher Bruhat orders exist,

@ whereas for singular cohomology only the Steenrod coproducts are
possible.
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Steenrod operations

Construction

For U € B([0, n],i+1) and a set of generating vectors L & ([,.Ojrq]), we define

Af C [0, n]\ L, by asserting that a € [0, n] \ L is in AY if and only if either

e LU{a} € U and ais an even gap, or
o LU{a} ¢ U and ai an odd gap.
Here, a is an even (odd) gap if #{/ € L | a < I} is even (odd).
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Steenrod operations

Construction

For U € B([0, n],i+1) and a set of generating vectors L & ([,.Ojr'i]), we define

Af C [0, n]\ L, by asserting that a € [0, n] \ L is in AY if and only if either
o LU{a} € U and ais an even gap, or
@ LU{a} ¢ U and ai an odd gap.

Here, a is an even (odd) gap if #{/ € L | a < I} is even (odd).

We define the cup-i coproduct AY: C(A") — C(A") ® C(A") by the

formula
AY([0,n]) ;= )  +LUA/®LUB,

Le(®

where B! :=[0,n] \ (LU AY).
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Steenrod operations

Proof of the homotopy formula

Proposition
For any U € B([0,n],i + 1), we have

ONY — (-1)AYo =1+ (-1)'T)A_; .

1
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Steenrod operations

Proof of the homotopy formula

Proposition

For any U € B([0,n],i + 1), we have

@Z%‘ (14 (1) T)Ar

When we expand 8A,U we see that terms from shared facets of cubes lying
inside Z([0, n], i + 1) cancel, and that we are left with terms of the form

F \ k and terms corresponding to A; and TA;. The former terms cancel
with those from (—1)'AY4.

[]

y
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Steenrod operations

Proof of the homotopy formula
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Steenrod operations

Conclusion

Thank you for your attention!
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