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Cellular diagonals

Consider the standard simplex �n in Rn+1. The diagonal

� : �n ! �n ⇥ �n

x 7! (x , x)

is not cellular.
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Alexander–Whitney diagonal

One such approximation is given by the Alexander–Whitney map.

�0(01) = 0⌦ 01 + 01⌦ 1

However, choosing such a map one breaks the S2 symmetry of �.

T�0(01) = 01⌦ 0 + 1⌦ 01
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Steenrod squares

N. E. Steenrod resolves homotopically this symmetry break by a family of
cup-i coproducts

�i : C•(�n) ! C•(�n)⌦ C•(�n)

which satisfy the homotopy formula

@�i � (�1)i�i@ = (1 + (�1)iT )�i�1 .

That is, each �i is an homotopy between �i�1 and T�i�1. These give
rise to Steenrod squares

Sqi : H
p(X ;Z/2Z) ! H

2p�i (X ;Z/2Z).
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Packets

For i + 2 6 n, we write
�
[0,n]
i+1

�
:= {S ⇢ [0, n] | |S | = i + 1}.

Definition

The packet of K = {k0 < k2 < · · · < ki+1} 2
�
[0,n]
i+2

�
is the set

P(K ) := {K \ k | k 2 K}

It is naturally ordered by the lexicographic order, where K \ kp < K \ kq if
and only if p < q, or its opposite, the reverse lexicographic order.

Example

The packet of 012 is {01, 02, 12}, lex is 01 < 02 < 12.
The packet of 023 is {02, 03, 23}, rex is 23 < 03 < 02.

10 / 27



Introduction

Higher Bruhat orders

Steenrod operations

Packets

For i + 2 6 n, we write
�
[0,n]
i+1

�
:= {S ⇢ [0, n] | |S | = i + 1}.

Definition

The packet of K = {k0 < k2 < · · · < ki+1} 2
�
[0,n]
i+2

�
is the set

P(K ) := {K \ k | k 2 K}

It is naturally ordered by the lexicographic order, where K \ kp < K \ kq if
and only if p < q, or its opposite, the reverse lexicographic order.

Example

The packet of 012 is {01, 02, 12}, lex is 01 < 02 < 12.
The packet of 023 is {02, 03, 23}, rex is 23 < 03 < 02.

10 / 27



Introduction

Higher Bruhat orders

Steenrod operations

Packets

For i + 2 6 n, we write
�
[0,n]
i+1

�
:= {S ⇢ [0, n] | |S | = i + 1}.

Definition

The packet of K = {k0 < k2 < · · · < ki+1} 2
�
[0,n]
i+2

�
is the set

P(K ) := {K \ k | k 2 K}

It is naturally ordered by the lexicographic order, where K \ kp < K \ kq if
and only if p < q, or its opposite, the reverse lexicographic order.

Example

The packet of 012 is {01, 02, 12}, lex is 01 < 02 < 12.
The packet of 023 is {02, 03, 23}, rex is 23 < 03 < 02.

10 / 27



Introduction

Higher Bruhat orders

Steenrod operations

Admissible orders

Definition

1 A total order ↵ of
�
[0,n]
i+1

�
is admissible if for all K 2

�
[0,n]
i+2

�
, the

elements P(K ) appear in either lexicographic or reverse-lexicographic
order under ↵.

2 Two orderings ↵ and ↵0 of
�
[0,n]
i+1

�
are equivalent if they di↵er by a

sequence of interchanges of pairs of adjacent elements that do not lie
in a common packet.

Example

Consider the order 01 < 23 < 03 < 13 < 02 < 12 of
�
[0,3]
2

�
.

It is admissible since P(012), P(013) in lex and P(023), P(123) in rex.
It is equivalent to 23 < 01 < 03 < 13 < 02 < 12.
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Higher Bruhat orders

Definition

The elements of the higher Bruhat poset B([0, n], i + 1) are admissible

orders of
�
[0,n]
i+1

�
, modulo equivalence.

The inversion set inv(↵) of an admissible order ↵ is the set of all
(i + 2)-subsets of [0, n] whose packets appear in rex.

Example

The inversion set of ↵ = 01 < 23 < 03 < 13 < 02 < 12 2 B([0, 3], 2) is
inv(↵) = {023, 123}.
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Higher Bruhat orders

Definition

The elements of the higher Bruhat poset B([0, n], i + 1) are admissible

orders of
�
[0,n]
i+1

�
, modulo equivalence. The poset structure is generated by

the covering relations given by [↵]l [↵0] if inv(↵0) = inv(↵) [ {K} for

K 2
�
[0,n]
i+2

�
\ inv(↵).

Example

[01 < 02 < 03 < 23 < 13 < 12]l [01 < 23 < 03 < 13 < 02 < 12]

Lex is unique minimum for , and rex is unique maximum.
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Properties

Theorem (Manin–Schechtman, 1989)

There is a bijection between elements of B([0, n], i + 2) and equivalence

classes of maximal chains in B([0, n], i + 1).
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Properties

Theorem (Kapranov–Voevodsky, 1991; Thomas, 2002)

There is a bijection between elements of B([0, n], i + 1) and cubillages of

the zonotope Z ([0, n], i + 1).

Cubillages of Z ([0, 3], 2) related by a flip.
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Steenrod coproducts

An overlapping partition L = (L0, L1, . . . , Li+1) of [0, n] is a family of
intervals Lp = [lp, lp+1] such that l0 = 0, li+2 = n, and for each
0 < p < i + 1 we have lp < lp+1.

Definition

For i > �1, the Steenrod cup-i coproduct is the chain map
�i : C•(�n) ! C•(�n)⌦ C•(�n) defined by

�i ([0, n]) :=
X

L
(�1)"(L)(L0 [ L2 [ · · · )⌦ (L1 [ L3 [ · · · ) ,

where the sum is over all overlapping partitions of [0, n] into i +2 intervals.

18 / 27

On 9,12
0123 012,23



Introduction

Higher Bruhat orders

Steenrod operations

Steenrod coproducts

An overlapping partition L = (L0, L1, . . . , Li+1) of [0, n] is a family of
intervals Lp = [lp, lp+1] such that l0 = 0, li+2 = n, and for each
0 < p < i + 1 we have lp < lp+1.

Definition

For i > �1, the Steenrod cup-i coproduct is the chain map
�i : C•(�n) ! C•(�n)⌦ C•(�n) defined by

�i ([0, n]) :=
X

L
(�1)"(L)(L0 [ L2 [ · · · )⌦ (L1 [ L3 [ · · · ) ,

where the sum is over all overlapping partitions of [0, n] into i +2 intervals.

18 / 27



Introduction

Higher Bruhat orders

Steenrod operations

Steenrod coproducts

Example

For the 0-simplex �0, we have �0(0) = 0⌦ 0. For the 1-simplex �1,

�0(01) = 0⌦ 01 + 01⌦ 1 ,

�1(01) = �01⌦ 01 .

For the 2-simplex �2, we have

�0(012) = 0⌦ 012 + 01⌦ 12 + 012⌦ 2 ,

�1(012) = 012⌦ 01� 02⌦ 012 + 012⌦ 12 ,

�2(012) = 012⌦ 012 .

19 / 27
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Cubical subcomplex

The key observation is the following.

Proposition

There is a bijection between faces of Z (S , |S |) excluding ? and S and

basis elements of C•(�n)⌦ C•(�n) which are supported on S.

Two cubillages indexed by initial vertices and generating vectors.
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Main results

We are now in position to connect higher Bruhat orders and Steenrod
coproducts.

Theorem (L.-A.–Williams, 2023)

For every element U = inv(↵) 2 B([0, n], i + 1), there is a coproduct

�U
i : C•(�n) ! C•(�n)⌦ C•(�n)

which gives a homotopy between �i�1 and �op
i�1

. If Umin and Umax are the

maximal and minimal elements of B([0, n], i + 1), then
{�Umin

i ,�Umax

i } = {�i ,�
op
i }.

Moreover, every coproduct on C•(�n) giving a homotopy between
�i�1 and �op

i�1
arises in this way, so long as it does not contain

redundant terms.
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Main results

It follows that from any covering relation U l V in B([0, n], i + 1),
one can construct a chain homotopy between �U

i and �V
i .

Theorem (L.-A.–Williams, 2023)

Any coproduct �U
i defines a Steenrod square SqUi in the cohomology of a

simplicial complex, and for any two U,V 2 B([0, n], i + 1) we have

SqUi = SqVi .

We show that

for cohomology of simplicial complexes non-trivial coproducts from
di↵erent elements of the higher Bruhat orders exist,

whereas for singular cohomology only the Steenrod coproducts are
possible.
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Construction

For U 2 B([0, n], i +1) and a set of generating vectors L 2
�
[0,n]
i+1

�
, we define

A
U
L ⇢ [0, n] \ L, by asserting that a 2 [0, n] \ L is in A

U
L if and only if either

L [ {a} 2 U and a is an even gap, or

L [ {a} /2 U and a i an odd gap.

Here, a is an even (odd) gap if #{l 2 L | a < l} is even (odd).

Definition

We define the cup-i coproduct �U
i : C(�n) ! C(�n)⌦ C(�n) by the

formula
�U

i ([0, n]) :=
X

L2([0,n]i+1
)

±L [ A
U
L ⌦ L [ B

U
L ,

where B
U
L := [0, n] \ (L [ A

U
L ).

24 / 27
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Proof of the homotopy formula

Proposition

For any U 2 B([0, n], i + 1), we have

@�U
i � (�1)i�U

i @ = (1 + (�1)iT )�i�1 .

Proof.

When we expand @�U
i we see that terms from shared facets of cubes lying

inside Z ([0, n], i + 1) cancel, and that we are left with terms of the form
F \ k and terms corresponding to �i and T�i . The former terms cancel
with those from (�1)i�U

i @.
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Proof of the homotopy formula
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Conclusion

Thank you for your attention!
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