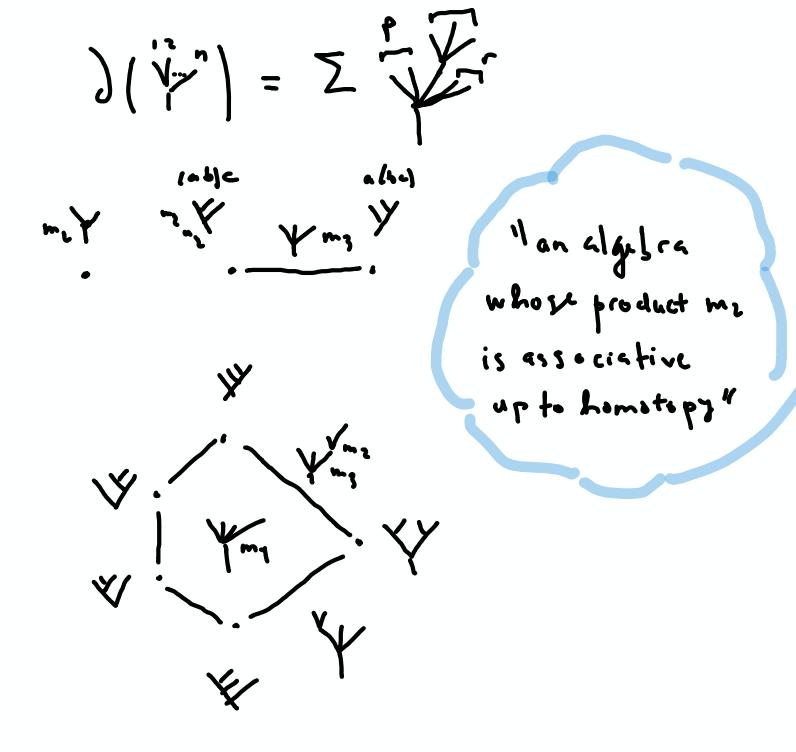
DEFINITION 4.1 (A_{∞}-algebra). — An A_{∞}-algebra is the data of a dg module (A, ∂) together with operations

$$m_n: A^{\otimes n} \longrightarrow A, \quad n \ge 2$$

of degree $|m_n| = n - 2$, satisfying the equations

$$[\partial, m_n] = -\sum_{\substack{p+q+r=n\\2\leqslant q\leqslant n-1}} (-1)^{p+qr} m_{p+1+r} (\mathrm{id}^{\otimes p} \otimes m_q \otimes \mathrm{id}^{\otimes r}), \quad n \ge 2.$$



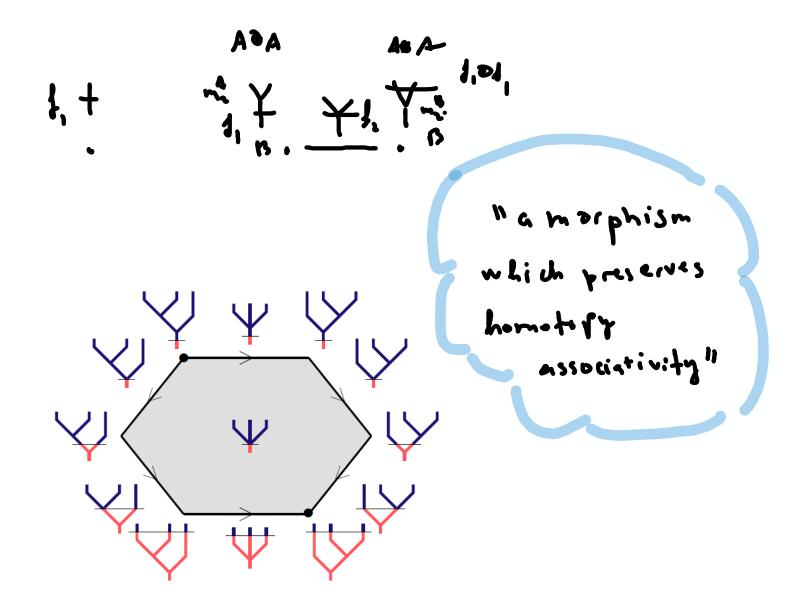
DEFINITION 4.2 (A_{∞}-morphism). — An A_{∞}-morphism $F : A \rightsquigarrow B$ between two A_{∞}-algebras ($A, \{m_n\}$) and ($B, \{m'_n\}$) is a family of linear maps

$$f_n: A^{\otimes n} \longrightarrow B, \ n \ge 1$$

of degree $|f_n| = n - 1$, satisfying the equations

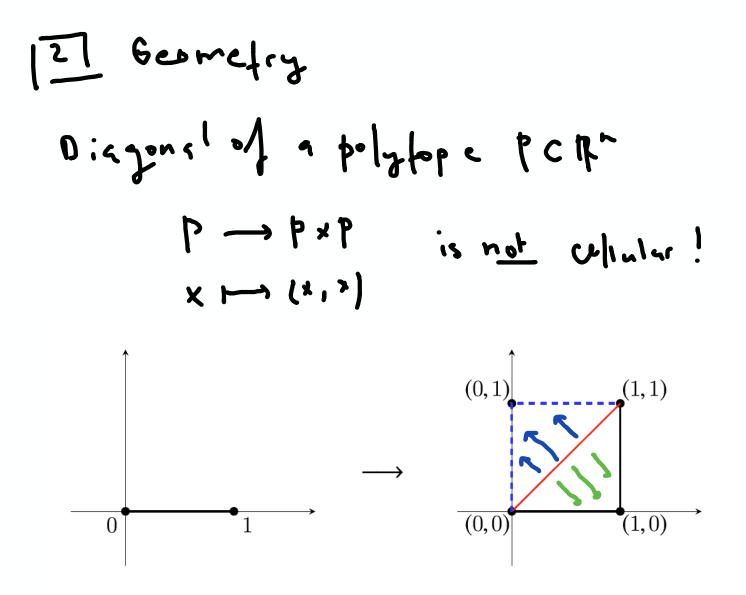
$$[\partial, f_n] = \sum_{\substack{p+q+r=n\\q\ge 2}} (-1)^{p+qr} f_{p+1+r} (\mathrm{id}^{\otimes p} \otimes m_q \otimes \mathrm{id}^{\otimes r}) - \sum_{\substack{i_1+\dots+i_k=n\\k\ge 2}} (-1)^{\varepsilon} m'_k (f_{i_1} \otimes \dots \otimes f_{i_k}),$$

for $n \ge 1$, where $\varepsilon = \sum_{u=1}^{k} (k-u)(1-i_u)$.



Nem: If
$$m_n = 0$$
, high $(f_n = 0, n \ge 3)$
these are just As-alg, As-morphisms
 $A \otimes B$
 $m_1^{A \otimes 0} = m_1^A \otimes id + id \otimes m_1^B$
 $\frac{A \otimes 0}{m_2} = m_2^A \otimes m_2^B$
Similar for morphisms

$$=) (As-sig, 0) monsidel category
$$(As-sig) : Conthis structure be lifted to
An-sig :
(A_1, m_1^A)
First step: construct (P) (B_1, m_2)
m_3^{AOB} = m_1^A (O) Y_B + Y_B (Y_{m_1}^A)
m_4^{AOB} = Y_O (Y + Y_O) + Y_O (Y_{m_1}^A)
m_4^{AOB} = Y_O (Y + Y_O) + Y_O (Y_{m_1}^A)
m_5^{AOB} = ... ??$$$$



Definition 1.1. A *cellular diagonal* of a polytope P is a continuous map $P \to P \times P$ such that

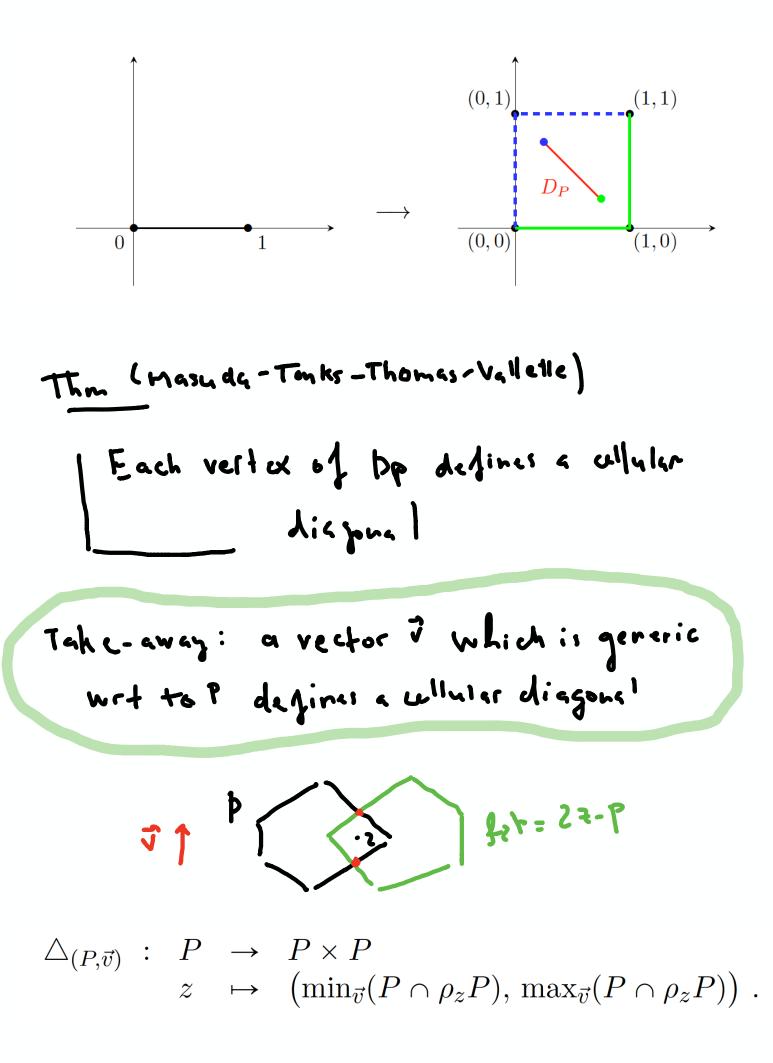
- (1) its image is a union of dim *P*-faces of $P \times P$ (i.e. it is cellular),
- (2) it agrees with the thin diagonal on the vertices of P, and
- (3) it is homotopic to the thin diagonal, relative to the image of the vertices.

A cellular diagonal is said to be *face-coherent* if its restriction to a face of P is itself a cellular diagonal for that face.

Universal construction (Billers-Stumples-Futton)

Definition 9. The *diagonals polytope* D_P of a polytope P is the fiber polytope $\Sigma(P \times P, P)$ of the projection

$$\begin{array}{ccc} P \times P \longrightarrow P \\ (x, y) \longmapsto \frac{x+y}{2}. \end{array}$$



A co - morphisms are encoded by an openadic bimod

$$M \infty (n) = C_{i}^{cell} (J_{n})$$

$$multiplihedren$$

$$\frac{V + V + V}{V + V}$$

$$\frac{V + V + V}{V + V}$$

$$\frac{Prop:}{Juppose that you have}$$

1) cellular diagonals for Kn. Jn

THEOREM 2. — The cellular image of the diagonal map $\Delta_n : J_n \to J_n \times J_n$ introduced in Definition 2.12 admits the following description. For \mathbb{N} and \mathbb{N}' two 2-colored

nestings of the linear graph with n vertices, we have that

$$(\mathcal{N}, \mathcal{N}') \in \operatorname{Im} \Delta_n \iff \forall (I, J) \in D(n), \ \exists B \in B(\mathcal{N}), \ |B \cap I| > |B \cap J| \ or$$
$$\exists Q \in Q(\mathcal{N}), \ |(Q \cup \{n\}) \cap I| > |(Q \cup \{n\}) \cap J| \ or$$
$$\exists B' \in B(\mathcal{N}'), \ |B' \cap I| < |B' \cap J| \ or$$
$$\exists Q' \in Q(\mathcal{N}'), \ |(Q' \cup \{n\}) \cap I| < |(Q' \cup \{n\}) \cap J|.$$

Pairs $(F,G) \in \operatorname{Im} \triangle_{(P,\vec{v})}$	Polytopes	0	1	2	3	4	5	6	[OEI22]
$\dim F + \dim G = \dim P$	Assoc.	1	2	6	22	91	408	1938	A000139
	Multipl.	1	2	8	42	254	1678	11790	to appear
	Permut.	1	2	8	50	432	4802	65536	A007334
$\dim F = \dim G = 0$	Assoc.	1	3	13	68	399	2530	16965	A000260
	Multipl.	1	3	17	122	992	8721	80920	to appear
	Permut.	1	3	17	149	1809	28399	550297	A213507

FIGURE 8. Number of pairs of faces in the cellular image of the diagonal of the associahedra, multiplihedra and permutahedra of dimension $0 \leq \dim P \leq 6$, induced by any good orientation vector.

New combinatories!

Thank you for your attention!

Lody² às soid all don

$$V = \{1, 2, 3\} \in \mathbb{R}^{3}$$

$$V = \{1, 2, 3\} \in \mathbb{R}^{3}$$

$$V = \{1, 4, 1\}$$
Forcey-loding implified for

$$V = V$$