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The Kashiwara–Vergne problem

For x , y elements of a Lie algebra,

if xy = yx , then we have exey = ex+y ,

if xy ̸= yx , then we have exey = ebch(x ,y), where

bch(x , y) = x + y +
1

2
[x , y ] +

1

12
[x , [x , y ]] + · · ·

and [x , y ] = xy − yx .

Problem

When can we write exey in terms of convergent power series and adjoint
operations?

Originally stated in the context of convolutions on Lie groups
(Kashiwara–Vergne, ’78), solved by Alekseev–Meinrenken (’06),
reformulated by Alekseev–Torossian (’12).
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Tangential automorphisms

Let us define the degree of a Lie word as its number of letters, e.g.
[[y , x ], y ] has degree three.

Let L denote the degree completion of the free Lie algebra on two
generators,

let A denote its universal enveloping algebra, and

define the space of cyclic words as the linear quotient

cyc :=A/[A,A].

There is a natural trace map tr : A → cyc.

Definition

A tangential derivation of L is a Lie derivation u : L → L for which
u(x) = [x , u1] and u(y) = [y , u2] for some u1, u2 ∈ L.

Tangential derivations form a Lie algebra, which integrates to the group
TAut of tangential automorphisms of L.
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Non-commutative Jacobian

Each element a ∈ A has a unique decomposition of the form

a = a0 + ∂x(a)x + ∂y (a)y

for some a0 ∈ C and ∂x(a), ∂y (a) ∈ A.

Definition

The non-commutative divergence map j : tder → cyc is the linear map
defined on a tangential derivation u = (u1, u2) by

j(u) := tr(∂x(u1)x + ∂y (u2)y).

It integrates to the non-commutative Jacobian J : TAut → cyc.
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Kashiwara–Vergne solutions

Definition

A Kashiwara–Vergne solution, or KV solution for short, is a pair

(F , r) ∈ TAut×z2C[[z]]

satisfying the two equations

F (exey ) = ex+y (SolKV1)

J(F ) = tr(r(x + y)− r(x)− r(y)). (SolKV2)

We denote the set of KV solutions by SolKV.

The tangential automorphism F uniquely determines the power series r ,
and the assignment F 7→ r is called the Duflo map.
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Everything up to degree n

We denote by L≤n :=L/L≥n+1 the quotient of the Lie algebra L by the
ideal of elements of degree greater than n. We define the degree n
quotients of A and cyc by

A≤n :=A/A≥n+1 and cyc≤n := cyc/cyc≥n+1.

The degree n quotient of the group of tangential automorphisms is

TAut≤n := TAut(L≤n).

The non-commutative Jacobian is homogeneous and induces a map

J : TAut≤n → cyc≤n.

Note that there is a natural surjective group homomorphism

πn : TAut → TAut≤n .

8 / 23



Kashiwara–Vergne solutions
Kashiwara–Vergne towers

Kashiwara–Vergne operads

Everything up to degree n

We denote by L≤n :=L/L≥n+1 the quotient of the Lie algebra L by the
ideal of elements of degree greater than n. We define the degree n
quotients of A and cyc by

A≤n :=A/A≥n+1 and cyc≤n := cyc/cyc≥n+1.

The degree n quotient of the group of tangential automorphisms is

TAut≤n := TAut(L≤n).

The non-commutative Jacobian is homogeneous and induces a map

J : TAut≤n → cyc≤n.

Note that there is a natural surjective group homomorphism

πn : TAut → TAut≤n .

8 / 23



Kashiwara–Vergne solutions
Kashiwara–Vergne towers

Kashiwara–Vergne operads

Everything up to degree n

We denote by L≤n :=L/L≥n+1 the quotient of the Lie algebra L by the
ideal of elements of degree greater than n. We define the degree n
quotients of A and cyc by

A≤n :=A/A≥n+1 and cyc≤n := cyc/cyc≥n+1.

The degree n quotient of the group of tangential automorphisms is

TAut≤n := TAut(L≤n).

The non-commutative Jacobian is homogeneous and induces a map

J : TAut≤n → cyc≤n.

Note that there is a natural surjective group homomorphism

πn : TAut → TAut≤n .

8 / 23



Kashiwara–Vergne solutions
Kashiwara–Vergne towers

Kashiwara–Vergne operads

KV solutions up to degree n

Definition

A KV-solution up to degree n is a pair

(F , r) ∈ TAut≤n ×z2C[[z]]/zn+1

satisfying the two equations

F (exey ) = ex+y in L≤n (1)

J(F ) = tr(r(x + y)− r(x)− r(y)) in cyc≤n. (2)

We denote the set of KV solutions up to degree n by SolKV(n).

Does every KV-solution up to degree n extends to a full KV-solution?
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Main result

Theorem (Dancso–Halacheva–L.-A.–Robertson, ’23)

The truncation maps SolKV(n+1) → SolKV(n) are surjections, and SolKV
admits a tower decomposition

· · · → SolKV(n+1) → SolKV(n) → SolKV(n−1) → · · ·

This implies that

degree by degree calculations of KV solutions always succeed,

one could use symmetric KV solutions to simplify the computation of
a class of Drinfel’d associators (Alekseev–Enriquez–Torossian ’10),

one could compute certain knot invariants degree by degree
(Bar-Natan–Dancso ’17).

In fact Alekseev–Torossian (’12) conjecture that all KV solutions arise from
associators (verified up to degree 16).
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Proof strategy

Idea: study KV solutions via their symmetries governed by

the Kashiwara–Vergne group KV (on the left), and

its graded version KRV (on the right).

Definition

The Kashiwara–Vergne group KV consists of pairs (F , r) ∈ TAut×z2C[[z]]
satisfying the equations

F (exey ) = exey ; (KV1)

J(F ) = tr(r(bch(x , y))− r(x)− r(y)) , (KV2)

where bch(x , y) denotes the Baker–Campbell–Hausdorff series.
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the Kashiwara–Vergne group KV (on the left), and

its graded version KRV (on the right).

Definition

The graded Kashiwara–Vergne group KRV consists of pairs
(F , r) ∈ TAut×z2C[[z]] satisfying the equations

F (ex+y ) = ex+y ; (KRV1)

J(F ) = tr(r(x + y)− r(x)− r(y)) . (KRV2)

As shown by Alekseev–Torossian, both KV and KRV act freely and
transitively on the left/right of SolKV by left/right multiplication by the
inverse.
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Proof strategy (continued)

Proposition

The elements of KRV(n) form a subgroup of TAut≤n. Moreover, KRV(n)

acts freely and transitively on SolKV(n) by left product with the inverse.

This reduces the question to the surjectivity of the maps

· · · → KRV(n+1) → KRV(n) → · · ·

Lemma

The group KRV(n) is a unipotent affine algebraic group.

Standard (but non-trivial!) algebraic geometry then reduces the question
to the surjectivity at the level of Lie algebras

· · · → krv(n+1) → krv(n) → · · ·
which is easy to prove.
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Proof strategy (continued)

The proof of this last lemma uses crucially the following result, which
builds on the topological interpretation of KV solutions as homomorphic
expansions of welded foams (knotted surfaces in R4) by Bar-Natan–Dancso.

Theorem (Dancso–Halacheva–Robertson,’23)

We have the following identifications

KV with the automorphism group of the tensor category (circuit

algebra, or wheeled prop) of welded foams ŵF,

KRV with the automorphism group of the tensor category of arrow
diagrams A,

SolKV with the set of structure preserving isomorphisms ŵF → A.

The up-to-degree-n version of this theorem allows one to show that
KRV(n) is an algebraic matrix group, which is moreover unipotent.
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Theorem (Dancso–Halacheva–Robertson,’23)

We have the following identifications

KV with the automorphism group of the tensor category (circuit

algebra, or wheeled prop) of welded foams ŵF,

KRV with the automorphism group of the tensor category of arrow
diagrams A,

SolKV with the set of structure preserving isomorphisms ŵF → A.

The up-to-degree-n version of this theorem allows one to show that
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Kashiwara–Vergne Lie algebra

Definition

The graded Kashiwara-Vergne Lie algebra consists of pairs
(u, r) ∈ tder× C[[z]] satisfying the equations

u(x + y) = 0 (krv1)

j(u) = tr(r(x + y)− r(x)− r(y)) . (krv2)

It is the linearization of the defining equations of KRV. We have that u
uniquely determines r , and exp(krv) = KRV.

Theorem

There is an isomorphism of Lie algebras gr(KRV) ∼= krv.

Here, the bracket on gr(KRV) is induced by the group commutator, which
respects the degree filtration.
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Kashiwara–Vergne Lie algebra (continued)

In fact, this compatiblity holds at the level of tangential automorphisms.
The degree filtration on TAut is given by

Fn(TAut) := ker(TAut → TAut≤n−1).

Lemma

For any m, n ≥ 1, we have that

(Fm(TAut),Fn(TAut)) ⊆ Fm+n(TAut) .

This allows us to prove that

Corollary (Dancso–Halacheva–L.-A.–Robertson,’23)

There is an isomorphism of Lie algebras gr(KV) ∼= krv.

There is an analogous result for the Grothendieck–Teichmüller group
(Drinfel’d, ’90).
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Kashiwara–Vergne towers

...via the following structural result.

Theorem

Any F (n) ∈ SolKV(n) induces an isomorphism ΨF (n) : KV(n) ∼=→ KRV(n), and
the vertical arrows in the following commutative diagram are surjective.
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Higher genus KV solutions

Let L denote the free Lie algebra L on 2g + n generators xi , yi , zj ,
1 ≤ i ≤ g , 1 ≤ j ≤ n. Define its tangential automorphisms
TAut(L) := {(F , f1, . . . , fn) ∈ Aut(L)× L⊕n | F (zj) = e−fj zje

fj}.

Definition

An KV solution of type (g , n + 1) is an F ∈ TAut(L) such that

F (

g∑
i=1

[xi , yi ] +
n∑

i=1

zj) = log(Πg
i=1[e

xi , eyi ]Πn
j=1e

zj ), and

j(F ) =

g∑
i=1

|h(xi ) + h(yi )|+
n∑

j=1

|rj(zj)| − |r(log(Πg
i=1[e

xi , eyi ]Πn
j=1e

zj ))|,

where h(s) := log((es − 1)/s), j is the divergence map and r is the Duflo
function. The set of such solutions is denoted SolKV(g ,n+1).
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Higher genus KV solutions (continued)

These higher genus KV solutions have their symmetry groups KV(g ,n+1)

and KRV(g ,n+1). We have SolKV = SolKV(0,3), KV = KV(0,3) and
KRV = KRV(0,3).

Theorem (Alekseev–Kawazumi–Kuno–Naef,’20)

KV solutions of type (g , n+ 1) are in bijection with formality isomorphisms
of the Goldman–Turaev Lie bialgebra associated to a compact oriented
surface of genus g with n + 1 boundary components.

Moreover, gluing and contraction of surfaces induce operations

tder(g1,n1+1) × tder(g2,n2+1) → tder(g1+g2,n1+n2+1), and

tder(g ,n+1) → tder(g+1,n)

which integrate to operations on tangential automorphisms.
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Kashiwara–Vergne operads

Conjecture: higher genus KV solutions and their symmetry groups form
modular operads in groups.

Theorem (Dancso–Halacheva–L.-A.–Robertson)

The set of genus zero KV solutions {SolKV(0,n+1)}n≥1, as well as their
symmetry groups {KV(0,n+1)}n≥1 and {KRV(0,n+1)}n≥1, form colored
operads in groups.

Since the Grothendieck–Teichmüller group GT embeds into KV = KV(0,3),
one could expect an action on the tower {SolKV(g ,n+1)}g ,n+1≥0 of higher
genus KV solutions. This is the subject of ongoing work.
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Conclusion

Thank you for your attention!
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