

From higher Bruhat orders to Steenrod cup-i coproducts, arXiv:2309.16481

Guillaume Laplante-Anfossi, University of Melbourne, guillaume.laplanteanfossi@unimelb.edu.au Nicholas Williams, Lancaster University, nicholas.williams@lancaster.ac.uk

- ► We give a construction which associates a coproduct on the chain complex of the simplex to an element of the higher Bruhat orders.
- \triangleright The minimal and maximal elements of the higher Bruhat orders recover the Steenrod cup-i coproducts.
- ▶ Our construction allows us to give simple geometric proofs of the key properties of these coproducts.

Figure 1: Cubillage of Z(5,2)

Higher Bruhat orders

Higher Bruhat orders $\mathcal{B}(n, k)$: family of posets introduced by Manin and Schechtman [MS89]. They essentially describe a higher-categorical structure on the weak Bruhat order on the symmetric group S_n .

- $\triangleright \mathcal{B}(n,1)$: weak Bruhat order on S_n .
- \triangleright $\mathcal{B}(n,k)$: equivalence classes of maximal chains in $\mathcal{B}(n,k-1)$.
- \triangleright $\mathcal{B}(n,k)$ can be described in terms of "cubillages" of "cyclic zonotopes" Z(n,k).

Consider $\xi \colon \mathbb{R} \to \mathbb{R}^{i+1}$, $t \mapsto (1, t, t^2, \dots, t^i)$. A **cyclic zonotope** Z(n, i+1) is the Minkowski sum of line segments $\overline{0\xi(t_1)}, \dots, \overline{0\xi(t_n)}$ for $t_1, \dots, t_n \in \mathbb{R}$.

A **cubillage** of a cyclic zonotope is a tiling by parallelotopes. We refer to these parallelotopes as "tiles".

References

[MS89] Yuriĭ I. Manin and Vadim V. Schechtman. "Arrangements of hyperplanes, higher braid groups and higher Bruhat orders". In: *Algebraic number theory*. Vol. 17. Adv. Stud. Pure Math. Academic Press, Boston, MA, 1989.

[Ste47] Norman E. Steenrod. "Products of cocycles and extensions of mappings". In: Ann. of Math. (2) 48 (1947).

Figure 2: Coproduct defined by the cubillage

Our construction

Let Δ^n be the standard *n*-simplex, with $C_{\bullet}(\Delta^n)$ and $C^{\bullet}(\Delta^n)$ the associated chain complex and cochain complexes.

Given a cubillage $U \in \mathcal{B}(n+1,i+1)$ of Z(n+1,i+1), we assign terms in $C_{\bullet}(\Delta^n) \otimes C_{\bullet}(\Delta^n)$ to each tile of U. We illustrate this in two dimensions (i=1).

We then define a coproduct $\Box_i^U : C_{\bullet}(\Delta^n) \to C_{\bullet}(\Delta^n) \otimes C_{\bullet}(\Delta^n)$ on the top face [0, n] as the sum of these terms over all the tiles in the cubillage U.

There is an analogous description for smaller faces.

Figure 3: Geometric explanation of homotopy formula (1)

Steenrod cup-i coproducts

The well-known cup product $\smile : C^{\bullet}(\Delta^n) \otimes C^{\bullet}(\Delta^n) \to C^{\bullet}(\Delta^n)$ is the linear dual of a cup coproduct $\Box : C_{\bullet}(\Delta^n) \to C_{\bullet}(\Delta^n) \otimes C_{\bullet}(\Delta^n)$.

As \square is not cocommutative, one extends it to an infinite tower of **Steenrod cup-**i coproducts $\square_i : C_{\bullet}(\Delta^n) \to C_{\bullet}(\Delta^n) \otimes C_{\bullet}(\Delta^n)$ for $i \geqslant 0$ where $\square_0 = \square$, such that

$$\partial \Box_i - (-1)^i \Box_i \partial = (1 + (-1)^i T) \Box_{i-1}, \tag{1}$$

where $T: X \otimes Y \mapsto Y \otimes X$ is the exchange of tensor factors [Ste47]. One interprets (1) as saying that \square_i gives a homotopy between \square_{i-1} and $T\square_{i-1}$, thereby resolving the lack of cocommutativity of \square_{i-1} . We have $\square_i^U = \square_i$ when U is either the minimal or the maximal element of $\mathcal{B}(n+1,i+1)$.

Our geometric explanation of the homotopy formula is that the terms of \square_i form a cubillage of a cyclic zonotope. The right-hand side of (1) gives the terms on the boundary of the zonotope, which is equal to the left-hand side, since the terms from internal facets of tiles cancel out.

Formula (1) hence holds for any cubillage U.