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Cellular diagonals of polytopes

DEF. thin diagonal of a set X = map δ :
{

X → X ×X
x 7→ (x, x) .

DEF. cellular diagonal of a d-polytope P = continuous map ∆ : P→ P× P such that
• its image is a union of d-dimensional faces of P× P,
• it agrees with δ on the vertices of P,
• it is homotopic to δ, relative to the image of the vertices of P.

REM. The image of ∆ is a union of pairs of faces F×G of P× P. By drawing the
polytopes (F+G)/2, we can visualize△(P,v) as a polytopal subdivision of P.

THM. [LA’22] For v ∈ Rd generic wrt P, the (−v,v)-optimal vertex of the fiber

polytope of the projection
{
P× P → P
(p, q) 7→ p+q

2
yields a cellular diagonal△(P,v) of P.

THM. [LA’22]
• Combinatorics of△(P,v) = combinatorics of the common refinement

of two copies of the normal fan of P translated in direction v.
• Faces of ∆P,v ⊆ pairs (F,G) of faces of P such that maxv(F) ≤ minv(G).

When this inclusion is an equality, the diagonal is called magical.
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Face numbers of cellular diagonals of classical polytopes
simplex cube associahedron permutahedron
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Diagonals of permutahedra
f -vector of △Permn

= f -vector of two generically translated
copies of the braid arrangement.

(ℓ, n)-partition forest =
ℓ-tuple F :=(F1, . . . , Fℓ) of set
partitions of [n] whose intersection
hypergraph is a hyperforest.

(ℓ, n)-braid arrangement Bℓn =
union of ℓ generically translated
copies of the braid arrangement.

THM. Flat poset of Bℓn ≃ poset of (ℓ, n)-partition forests
ordered by componentwise refinement.

THM. The Möbius polynomial µBℓ
n
(x, y) is given by

(xy)n−1−ℓn
∑
F≤G

∏
i∈[ℓ]

x#Fiy#Gi

∏
p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)! ,

where F ≤ G ranges over all intervals of the (ℓ, n)-partition
forest poset, and Fi[p] denotes the restriction of the partition Fi

to the part p of Gi.

Diagonals of associahedra
THM. [MTTV’21]

k-faces of ∆Asso(n) ←→
(F,G) faces of Asso(n)

with dim(F) + dim(G) = k
and max(F) ≤ min(G).

THM. For any n, k ≥ 1, the number of k-faces of ∆Asso(n) is

∑
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Techniques: generating functions — quadratic method —
reparametrization — Lagrange inversion.
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