Diagonals of permutahedra and associahedra

Alin Bostan **INRIA**

Frédéric Chyzak **INRIA**

Bérénice Delcroix-Oger Université de Montpellier

Guillaume Laplante-Anfossi Syddansk Universitet

Vincent Pilaud Universitat de Barcelona

Kurt Stoeckl The University of Melbourne

Cellular diagonals of polytopes

DEF. thin diagonal of a set $X = \text{map } \delta : \begin{cases} X & \to X \times X \\ x & \mapsto (x, x) \end{cases}$.

DEF. cellular diagonal of a d-polytope $\mathbb{P}=$ continuous map $\Delta:\mathbb{P}\to\mathbb{P}\times\mathbb{P}$ such that

- its image is a union of d-dimensional faces of $\mathbb{P} \times \mathbb{P}$,
- it agrees with δ on the vertices of \mathbb{P} ,
- it is homotopic to δ , relative to the image of the vertices of \mathbb{P} .

REM. The image of Δ is a union of pairs of faces $\mathbb{F} \times \mathbb{G}$ of $\mathbb{P} \times \mathbb{P}$. By drawing the polytopes $(\mathbb{F} + \mathbb{G})/2$, we can visualize $\triangle_{(\mathbb{P}, v)}$ as a polytopal subdivision of \mathbb{P} .

THM. [LA'22] For $v \in \mathbb{R}^d$ generic wrt \mathbb{P} , the (-v, v)-optimal vertex of the fiber polytope of the projection $\left\{ \begin{array}{ccc} \mathbb{P} \times \mathbb{P} & \to & \mathbb{P} \\ (p,q) & \mapsto & \frac{p+q}{2} \end{array} \right.$ yields a cellular diagonal $\triangle_{(\mathbb{P},\boldsymbol{v})}$ of \mathbb{P} .

THM. [LA'22]

- Combinatorics of $\triangle_{(\mathbb{P},\boldsymbol{v})} = \text{combinatorics of the common refinement}$ of two copies of the normal fan of $\mathbb P$ translated in direction v.
- Faces of $\Delta_{\mathbb{P},v} \subseteq \text{pairs } (\mathbb{F},\mathbb{G}) \text{ of faces of } \mathbb{P} \text{ such that } \max_v(\mathbb{F}) \leq \min_v(\mathbb{G}).$ When this inclusion is an equality, the diagonal is called magical.

segment

triangle

Face numbers of cellular diagonals of classical polytopes

simplex

$$f_k = (k+1) \binom{n+1}{k+2}$$
 $f_k = \binom{n-1}{k} 2^k 3^{n-1-k}$

associahedron

$$f_k = \frac{2\binom{n-1}{k}\binom{4n+1-k}{n+1}}{(3n+1)(3n+2)} \qquad f_0 = n! [z^n] \exp\left(\sum_{m\geq 1} \frac{C_m z^m}{m}\right)$$
$$f_{n-1} = 2(n+1)^{n-2}$$

permutahedron

$$f_0 = n! [z^n] \exp\left(\sum_{m \ge 1} \frac{C_m z^m}{m}\right)$$
$$f_{n-1} = 2(n+1)^{n-2}$$

Diagonals of permutahedra

f-vector of $\triangle_{\mathbb{P}erm_n} = f$ -vector of two generically translated copies of the braid arrangement.

 (ℓ, n) -partition forest =

 ℓ -tuple $\boldsymbol{F} := (F_1, \dots, F_\ell)$ of set partitions of [n] whose intersection hypergraph is a hyperforest.

 (ℓ, n) -braid arrangement $\mathcal{B}_n^{\ell} =$ union of ℓ generically translated copies of the braid arrangement.

THM. Flat poset of $\mathcal{B}_n^{\ell} \simeq \text{poset of } (\ell, n)$ -partition forests ordered by componentwise refinement.

THM. The Möbius polynomial $\mu_{\mathcal{B}_n^{\ell}}(x,y)$ is given by

$$(xy)^{n-1-\ell n} \sum_{\mathbf{F} \leq \mathbf{G}} \prod_{i \in [\ell]} x^{\#F_i} y^{\#G_i} \prod_{p \in G_i} (-1)^{\#F_i[p]-1} (\#F_i[p]-1)!,$$

where $F \leq G$ ranges over all intervals of the (ℓ, n) -partition forest poset, and $F_i[p]$ denotes the restriction of the partition F_i to the part p of G_i .

Diagonals of associahedra

THM. [MTTV'21] (\mathbb{F}, \mathbb{G}) faces of $\mathbb{A}sso(n)$ k-faces of $\Delta_{\mathbb{A}sso(n)} \longleftrightarrow \text{ with } \dim(\mathbb{F}) + \dim(\mathbb{G}) = k$ and $\max(\mathbb{F}) \leq \min(\mathbb{G})$.

THM. For any $n, k \geq 1$, the number of k-faces of $\Delta_{Asso(n)}$ is

$$\sum_{S \le T \in \text{Tam}(n)} \binom{\text{des}(S) + \text{asc}(T)}{k} = \frac{2\binom{n-1}{k}\binom{4n+1-k}{n+1}}{(3n+1)(3n+2)}$$

Techniques: generating functions — quadratic method reparametrization — Lagrange inversion.

More details?

Refined product formulas for Tamari intervals

A. Bostan, F. Chyzak & V. Pilaud

arXiv:2303.10986

Cellular diagonals of permutahedra

B. Delcroix-Oger, G. Laplante-Anfossi, V. Pilaud & K. Stoeckl arXiv:2308.12119

