The combinatorics of the permutahedron diagonals

Guillaume Laplante-Anfossi, joint work with Bérénice Delcroix-Oger, Matthieu Josuat-Vergès, Vincent Pilaud and Kurt StoeckI

The University of Melbourne

Copenhagen-Jerusalem Combinatorics Seminar - May 18th, 2023

Table of contents

(1) Permutahedron diagonals
(2) Enumerative results
(3) Algebraic consequences

Enumerative results

Table of contents

(1) Permutahedron diagonals
(2) Enumerative results
3) Algebraic consequences

Cellular diagonals

Let P be a polytope in \mathbb{R}^{n}. The diagonal

$$
\begin{aligned}
\Delta: P & \rightarrow P \times P \\
x & \mapsto(x, x)
\end{aligned}
$$

is not cellular.

Cellular diagonals

Let P be a polytope in \mathbb{R}^{n}. The diagonal

$$
\begin{aligned}
\Delta: P & \rightarrow P \times P \\
x & \mapsto(x, x)
\end{aligned}
$$

is not cellular.

Cellular diagonals

Definition

A cellular diagonal of a polytope P is a continuous map $P \rightarrow P \times P$ such that
(1) its image is a union of $\operatorname{dim} P$-faces of $P \times P$ (i.e. it is cellular),
(2) it agrees with the thin diagonal on the vertices of P, and
(3) it is homotopic to the thin diagonal, relative to the image of the vertices.

Cellular diagonals

Example

- Simplices: Alexander-Whitney map (1935-38).
- Cubes: J.-P. Serre's thesis (1951).

Cellular diagonals

Example

- Simplices: Alexander-Whitney map (1935-38).
- Cubes: J.-P. Serre's thesis (1951).

Picture: V. Pilaud.

Cellular diagonals

Example

- Associahedron: Saneblidze-Umble (2004), Markl-Shnider (2006), Masuda-Tonks-Thomas-Vallette (2021).
- Permutahedron: Saneblidze-Umble (2004), L.-A. (2022).

Cellular diagonals

Example

- Associahedron: Saneblidze-Umble (2004), Markl-Shnider (2006), Masuda-Tonks-Thomas-Vallette (2021).
- Permutahedron: Saneblidze-Umble (2004), L.-A. (2022).

Cellular diagonals

Definition

The polytope of diagonals $D_{P}:=\Sigma(P \times P, P)$ is the fiber polytope of the projection $(x, y) \mapsto(x+y) / 2$.

Cellular diagonals

Definition

The polytope of diagonals $D_{P}:=\Sigma(P \times P, P)$ is the fiber polytope of the projection $(x, y) \mapsto(x+y) / 2$.

Cellular diagonals

Definition

The polytope of diagonals $D_{P}:=\Sigma(P \times P, P)$ is the fiber polytope of the projection $(x, y) \mapsto(x+y) / 2$.

Each vertex of D_{P}, selected by a vector \vec{v} in general position wrt P, defines a cellular diagonal $\triangle_{(P, \vec{v})}$.

Cellular diagonals

- Each cellular diagonal defines a (tight coh.) subdivision,
- whose dual is obtained by perturbing the normal fan in a generic direction

Cellular diagonals

- Each cellular diagonal defines a (tight coh.) subdivision,
- whose dual is obtained by perturbing the normal fan in a generic direction

Picture: V. Pilaud

Cellular diagonals

- This is the Fulton-Sturmfels formula

Cellular diagonals

- This is the Fulton-Sturmfels formula

Theorem. For $c \in A^{p}(X), \tilde{c} \in A^{q}(X)$, the product $c \cup \tilde{c}$ in $A^{p+q}(X)$ is given by the Minkowski weight that assigns to a cone γ of codimension $p+q$ the value

$$
(c \cup \tilde{c})(\gamma)=\sum m_{\sigma, \tau}^{\gamma} \cdot c(\sigma) \cdot \tilde{c}(\tau) .
$$

The sum is over a certain set of cones σ and τ of codimension p and q that contain γ, determined by the choice of a generic vector v in $N: \sigma$ and τ appear when $\sigma+v$ meets τ. The coefficient $m_{\sigma, \tau}^{\nu}$ is the index $\left[N: N_{\sigma}+N_{\tau}\right]$ where $N_{\sigma}:=\mathbf{Z}(N \cap \sigma)$ and $N_{\tau}:=\mathbf{Z}(N \cap \tau)$.

Cellular diagonals

- This is the Fulton-Sturmfels formula

Theorem. For $c \in A^{p}(X), \tilde{c} \in A^{q}(X)$, the product $c \cup \tilde{c}$ in $A^{p+q}(X)$ is given by the Minkowski weight that assigns to a cone γ of codimension $p+q$ the value

$$
(c \cup \tilde{c})(\gamma)=\sum m_{\sigma, \tau}^{\gamma} \cdot c(\sigma) \cdot \tilde{c}(\tau) .
$$

The sum is over a certain set of cones σ and τ of codimension p and q that contain γ, determined by the choice of a generic vector v in $N: \sigma$ and τ appear when $\sigma+v$ meets τ. The coefficient $m_{\sigma, \tau}^{\gamma}$ is the index $\left[N: N_{\sigma}+N_{\tau}\right]$ where $N_{\sigma}:=\mathbf{Z}(N \cap \sigma)$ and $N_{\tau}:=\mathbf{Z}(N \cap \tau)$.

William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, 1997.

Permutahedron diagonals

Definition

The $(n-1)$-dimensional permutahedron P_{n} is the convex hull of the points

$$
(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{n}, \sigma \in \mathbb{S}_{n} .
$$

Permutahedron diagonals

Definition

The $(n-1)$-dimensional permutahedron P_{n} is the convex hull of the points

$$
(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{n}, \sigma \in \mathbb{S}_{n} .
$$

Permutahedron diagonals

The normal fan of the permutahedron is the braid arrangement

$$
\mathcal{B}_{n}:=\left\{x_{i}-x_{j}=0 \mid 1 \leq i<j \leq n\right\} .
$$

Permutahedron diagonals

The normal fan of the permutahedron is the braid arrangement

$$
\mathcal{B}_{n}:=\left\{x_{i}-x_{j}=0 \mid 1 \leq i<j \leq n\right\} .
$$

Iterated permutahedron diagonals

Definition

For any integers $\ell, n \geq 1$, the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is the arrangement obtained as the union of ℓ generically translated copies of the braid arrangement \mathcal{B}_{n}.

Iterated permutahedron diagonals

Definition

For any integers $\ell, n \geq 1$, the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is the arrangement obtained as the union of ℓ generically translated copies of the braid arrangement \mathcal{B}_{n}.

Table of contents

(1) Permutahedron diagonals
(2) Enumerative results
(3) Algebraic consequences

The (ℓ, n)-braid arrangement

We want to study the flat poset of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ}.

Definition

A flat of an hyperplane arrangement \mathcal{A} is a non-empty affine subspace of \mathbb{R}^{d} that can be obtained as the intersection of some hyperplanes of \mathcal{A}. The flat poset of \mathcal{A} is poset of flats of \mathcal{A} ordered by reverse inclusion.

The (ℓ, n)-braid arrangement

We want to study the flat poset of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ}.

Definition

A flat of an hyperplane arrangement \mathcal{A} is a non-empty affine subspace of \mathbb{R}^{d} that can be obtained as the intersection of some hyperplanes of \mathcal{A}. The flat poset of \mathcal{A} is poset of flats of \mathcal{A} ordered by reverse inclusion.

The (ℓ, n)-braid arrangement

Definition (Partition forest)

A (ℓ, n)-partition forest (resp. (ℓ, n)-partition tree) is a ℓ-tuple $\left(F_{1}, \ldots, F_{\ell}\right)$ of set partitions of [n] whose intersection hypergraph is a hyperforest (resp. hypertree).

The (ℓ, n)-braid arrangement

Definition (Partition forest)

A (ℓ, n)-partition forest (resp. (ℓ, n)-partition tree) is a ℓ-tuple $\left(F_{1}, \ldots, F_{\ell}\right)$ of set partitions of [n] whose intersection hypergraph is a hyperforest (resp. hypertree).

The (ℓ, n)-braid arrangement

Definition (Partition forest poset)

The (ℓ, n)-partition forest poset is the set of (ℓ, n)-partition forest, ordered by component-wise refinement of partitions.

The (ℓ, n)-braid arrangement

Definition (Partition forest poset)

The (ℓ, n)-partition forest poset is the set of (ℓ, n)-partition forest, ordered by component-wise refinement of partitions.

Proposition

The flat poset of \mathcal{B}_{n}^{ℓ} is isomorphic to the (ℓ, n)-partition forest poset.

The (ℓ, n)-braid arrangement

Definition (Partition forest poset)

The (ℓ, n)-partition forest poset is the set of (ℓ, n)-partition forest, ordered by component-wise refinement of partitions.

Proposition

The flat poset of \mathcal{B}_{n}^{ℓ} is isomorphic to the (ℓ, n)-partition forest poset.

Proof.

(1) Each set partition corresponds to a flat of \mathcal{B}_{n},
(2) Since the ℓ copies of \mathcal{B}_{n} are in generic position, acyclic intersection hypergraphs correspond to flats of \mathcal{B}_{n}^{ℓ},
(3) Moreover, refinement of flats is given by componentwise refinement of partitions.

Partition forests and rainbow forests

(1) (2) (3)

Facets of the diagonal - Vertices of the arrangement

Theorem

The number of vertices of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is

$$
f_{0}\left(\mathcal{B}_{n}^{\ell}\right)=\ell((\ell-1) n+1)^{n-2} .
$$

Facets of the diagonal - Vertices of the arrangement

Theorem

The number of vertices of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is

$$
f_{0}\left(\mathcal{B}_{n}^{\ell}\right)=\ell((\ell-1) n+1)^{n-2} .
$$

Proof.

Use a colored Prüfer code to count (ℓ, n)-rainbow trees, which are in bijection with (ℓ, n)-partition trees.

Facets of the diagonal - Vertices of the arrangement

Theorem

The number of vertices of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is

$$
f_{0}\left(\mathcal{B}_{n}^{\ell}\right)=\ell((\ell-1) n+1)^{n-2}
$$

Proof.

Use a colored Prüfer code to count (ℓ, n)-rainbow trees, which are in bijection with (ℓ, n)-partition trees.

$n \backslash \ell$	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1
2	1	2	3	4	5	6	7	8
3	1	8	21	40	65	96	133	176
4	1	50	243	676	1445	2646	4375	6728
5	1	432	3993	16384	46305	105456	208537	373248
6	1	4802	85683	521284	1953125	5541126	13119127	27350408
7	1	65536	2278125	20614528	102555745	362797056	1029059101	2500000000
8	1	1062882	72412707	976562500	6457339845	28500625446	96889010407	274371577992
					$19 / 33$			

Facets of the diagonal - Vertices of the arrangement

Theorem

For any k_{1}, \ldots, k_{ℓ} such that $0 \leq k_{i} \leq n-1$ for $i \in[\ell]$ and $\sum_{i=1}^{\ell} k_{i}=n-1$, the number of vertices v of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} such that the smallest flat of the ith copy of \mathcal{B}_{n} containing v has dimension $n-k_{i}-1$ is given by

$$
n^{\ell-1}\binom{n-1}{k_{1}, \ldots, k_{\ell}} \prod_{i=1}^{\ell}\left(n-k_{i}\right)^{k_{i}-1}
$$

Facets of the diagonal - Vertices of the arrangement

Theorem

For any k_{1}, \ldots, k_{ℓ} such that $0 \leq k_{i} \leq n-1$ for $i \in[\ell]$ and $\sum_{i=1}^{\ell} k_{i}=n-1$, the number of vertices v of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} such that the smallest flat of the ith copy of \mathcal{B}_{n} containing v has dimension $n-k_{i}-1$ is given by

$$
n^{\ell-1}\binom{n-1}{k_{1}, \ldots, k_{\ell}} \prod_{i=1}^{\ell}\left(n-k_{i}\right)^{k_{i}-1}
$$

Proof.

Use a colored Prüfer code to count (ℓ, n)-rainbow trees with k_{i} nodes colored by i.

Vertices of the diagonal - Regions of the arrangement

Theorem

The numbers of regions and of bounded regions of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} are given by

$$
\begin{aligned}
f_{n-1}\left(\mathcal{B}_{n}^{\ell}\right) & =n!\left[z^{n}\right] \exp \left(\sum_{m \geq 1} \frac{F_{\ell, m} z^{m}}{m}\right) \\
\text { and } \quad b_{n-1}\left(\mathcal{B}_{n}^{\ell}\right) & =(n-1)!\left[z^{n-1}\right] \exp \left((\ell-1) \sum_{m \geq 1} F_{\ell, m} z^{m}\right) .
\end{aligned}
$$

where $F_{\ell, m}:=\frac{1}{(\ell-1) m+1}\binom{\ell m}{m}$ is the Fuss-Catalan number.

Vertices of the diagonal - Regions of the arrangement

Theorem

The number of regions of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is given by

$$
f_{n-1}\left(\mathcal{B}_{n}^{\ell}\right)=n!\left[z^{n}\right] \exp \left(\sum_{m \geq 1} \frac{F_{\ell, m} z^{m}}{m}\right)
$$

Proof.

(1) use Zaslavsky's theorem (1975), expressing the f-polynomial of the arrangement in terms of the Möbius function of the flat poset, and

Vertices of the diagonal - Regions of the arrangement

Theorem

The number of regions of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is given by

$$
f_{n-1}\left(\mathcal{B}_{n}^{\ell}\right)=n!\left[z^{n}\right] \exp \left(\sum_{m \geq 1} \frac{F_{\ell, m} z^{m}}{m}\right)
$$

Proof.

(1) use Zaslavsky's theorem (1975), expressing the f-polynomial of the arrangement in terms of the Möbius function of the flat poset, and
(2) use again the bijection between (ℓ, n)-partition forests and (ℓ, n)-rainbow forests, to

Vertices of the diagonal - Regions of the arrangement

Theorem

The number of regions of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is given by

$$
f_{n-1}\left(\mathcal{B}_{n}^{\ell}\right)=n!\left[z^{n}\right] \exp \left(\sum_{m \geq 1} \frac{F_{\ell, m} z^{m}}{m}\right)
$$

Proof.

(1) use Zaslavsky's theorem (1975), expressing the f-polynomial of the arrangement in terms of the Möbius function of the flat poset, and
(2) use again the bijection between (ℓ, n)-partition forests and (ℓ, n)-rainbow forests, to
(3) determine the characteristic polynomial of \mathcal{B}_{n}^{ℓ},

Vertices of the diagonal - Regions of the arrangement

Theorem

The number of regions of the (ℓ, n)-braid arrangement \mathcal{B}_{n}^{ℓ} is given by

$$
f_{n-1}\left(\mathcal{B}_{n}^{\ell}\right)=n!\left[z^{n}\right] \exp \left(\sum_{m \geq 1} \frac{F_{\ell, m} z^{m}}{m}\right)
$$

Proof.

(1) use Zaslavsky's theorem (1975), expressing the f-polynomial of the arrangement in terms of the Möbius function of the flat poset, and
(2) use again the bijection between (ℓ, n)-partition forests and (ℓ, n)-rainbow forests, to
(3) determine the characteristic polynomial of \mathcal{B}_{n}^{ℓ},
(9) and conclude using generating functionology.

Table of contents

(1) Permutahedron diagonals
(2) Enumerative results
(3) Algebraic consequences

Operadic diagonals

Recall that each face $A_{1}|\ldots| A_{k}$ of the permutahedron $P_{\left|A_{1}\right|+\cdots+\left|A_{k}\right|-1}$ is isomorphic to the product $P_{\left|A_{1}\right|-1} \times \cdots \times P_{\left|A_{k}\right|-1}$ of lower dimensional permutahedra, via the isomorphism

$$
\begin{gathered}
\left(\mathbb{R}^{\left|A_{1}\right|} \times \cdots \times \mathbb{R}^{\left|A_{k}\right|}\right. \\
\left(x_{1}, \ldots, x_{\left|A_{1}\right|}\right) \times \cdots \times\left(x_{\left|A_{1}\right|+\cdots+\left|A_{k-1}\right|+1}, \ldots, x_{\left|A_{1}\right|+\cdots+\left|A_{k}\right|}\right) \\
\xrightarrow{\cong} \\
\mapsto
\end{gathered}
$$

where σ is the $\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)$-shuffle sending the increasingly ordered elements of $A_{1} \cup \ldots \cup A_{k}$ to the block-by-block increasingly ordered elements of $A_{1}|\ldots| A_{k}$.

Operadic diagonals

Definition

A diagonal of the permutahedra \triangle is operadic if for every face $A_{1}|\ldots| A_{k}$ of the permutahedron $P_{\left|A_{1}\right|+\cdots+\left|A_{k}\right|-1}$, the map Θ induces a topological cellular isomorphism

$$
\triangle\left(A_{1}\right) \times \ldots \times \triangle\left(A_{k}\right) \cong \triangle\left(A_{1}|\ldots| A_{k}\right)
$$

Operadic diagonals

Definition

A diagonal of the permutahedra \triangle is operadic if for every face $A_{1}|\ldots| A_{k}$ of the permutahedron $P_{\left|A_{1}\right|+\cdots+\left|A_{k}\right|-1}$, the map Θ induces a topological cellular isomorphism

$$
\triangle\left(A_{1}\right) \times \ldots \times \triangle\left(A_{k}\right) \cong \triangle\left(A_{1}|\ldots| A_{k}\right)
$$

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:
(1) the one defined in my thesis (2022), and

Operadic diagonals

Definition

A diagonal of the permutahedra \triangle is operadic if for every face $A_{1}|\ldots| A_{k}$ of the permutahedron $P_{\left|A_{1}\right|+\cdots+\left|A_{k}\right|-1}$, the map Θ induces a topological cellular isomorphism

$$
\triangle\left(A_{1}\right) \times \ldots \times \triangle\left(A_{k}\right) \cong \triangle\left(A_{1}|\ldots| A_{k}\right)
$$

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:
(1) the one defined in my thesis (2022), and
(2) one that recovers the Saneblidze-Umble diagonal (2004) at the cellular level.

Operadic diagonals

Let $U(n):=\{\{I, J\}|I, J \subset[n],|I|=|J|, I \cap J=\emptyset\}$.

Operadic diagonals

Let $U(n):=\{\{I, J\}|I, J \subset[n],|I|=|J|, I \cap J=\emptyset\}$.

Definition

The LA and SU orders on $U=\{U(n)\}_{n \geq 1}$ are defined by

- LA $(n):=\{(I, J) \mid\{I, J\} \in U(n), \min (I \cup J)=\min I\}$, and by
- $\operatorname{SU}(n):=\{(I, J) \mid\{I, J\} \in U(n), \max (I \cup J)=\max J\}$.

Operadic diagonals

Let $U(n):=\{\{I, J\}|I, J \subset[n],|I|=|J|, I \cap J=\emptyset\}$.

Definition

The LA and SU orders on $U=\{U(n)\}_{n \geq 1}$ are defined by

- LA $(n):=\{(I, J) \mid\{I, J\} \in U(n), \min (I \cup J)=\min I\}$, and by
- $\mathrm{SU}(n):=\{(I, J) \mid\{I, J\} \in U(n), \max (I \cup J)=\max J\}$.

Proposition

The two operadic diagonals are given by the family of vectors $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ which satisfy

$$
\sum_{i \in I} v_{i}>\sum_{i \in J} v_{j}, \forall(I, J) \in \mathrm{LA}(n), \text { resp. } \mathrm{SU}(n)
$$

Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals

Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals
(1) Only one choice in dimension 0 ,

Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals
(1) Only one choice in dimension 0 ,
(2) Only one choice in dimension 1 ,

Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals
(1) Only one choice in dimension 0 ,
(2) Only one choice in dimension 1 ,
(3) Only one choice in dimension 2,

Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals
(1) Only one choice in dimension 0 ,
(2) Only one choice in dimension 1 ,
(3) Only one choice in dimension 2,
(9) Two choices in dimension 3,

Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals
(1) Only one choice in dimension 0 ,
(2) Only one choice in dimension 1 ,
(3) Only one choice in dimension 2,
(9) Two choices in dimension 3,
(5) From dimension 4 on, the operadic property forces one to stick with one family of vectors.

Operahedra

Definition

An operahedron of dimension $k \geq 0$ is a polytope P_{t} whose face lattice is isomorphic to the lattice of nestings of a planar tree t with $k+2$ vertices.

Operahedra

Definition

An operahedron of dimension $k \geq 0$ is a polytope P_{t} whose face lattice is isomorphic to the lattice of nestings of a planar tree t with $k+2$ vertices.

Operahedra

Definition

An operahedron of dimension $k \geq 0$ is a polytope P_{t} whose face lattice is isomorphic to the lattice of nestings of a planar tree t with $k+2$ vertices.

Operahedra

Definition

An operahedron of dimension $k \geq 0$ is a polytope P_{t} whose face lattice is isomorphic to the lattice of nestings of a planar tree t with $k+2$ vertices.

The operahedra generalize the associahedra and encode the notion of homotopy operad.

Operadic diagonals of the operahedra

Definition

An operadic diagonal for the operahedra is a choice of diagonal \triangle_{t} for each operahedron P_{t}, such that $\triangle:=\left\{\triangle_{t}\right\}$ commutes with the map Θ.

Operadic diagonals of the operahedra

Definition

An operadic diagonal for the operahedra is a choice of diagonal \triangle_{t} for each operahedron P_{t}, such that $\triangle:=\left\{\triangle_{t}\right\}$ commutes with the map Θ.

Theorem

There are exactly
(1) two operadic diagonals of the Loday operahedra, therefore exactly
(2) two colored topological cellular operad structures on the Loday operahedra, and incidentally exactly
(3) two universal tensor products of homotopy operads, which agree with the generalized Tamari order on fully nested trees.

Operadic diagonals of the operahedra

Theorem

There are exactly
(1) two operadic diagonals of the Loday operahedra, therefore exactly
(2) two colored topological cellular operad structures on the Loday operahedra, and incidentally exactly
(3) two universal tensor products of homotopy operads, which agree with the generalized Tamari order on fully nested trees.

Proof.

To have an operad structure on the operahedra, we need the same choice of diagonal for each subtree of a given tree. Now suppose one chooses LA for t and SU for t^{\prime}. One can then find a bigger tree $t^{\prime \prime}$ which has both t and t^{\prime} has subtrees, a contradiction.

Multiplihedra

Definition

A multiplihedron of dimension $n \geq 0$ is a polytope J_{n} whose face lattice is isomorphic to the lattice of 2 -colored trees with $n+1$ leaves.

Multiplihedra

Definition

A multiplihedron of dimension $n \geq 0$ is a polytope J_{n} whose face lattice is isomorphic to the lattice of 2 -colored trees with $n+1$ leaves.

Multiplihedra

Definition

A multiplihedron of dimension $n \geq 0$ is a polytope J_{n} whose face lattice is isomorphic to the lattice of 2 -colored trees with $n+1$ leaves.

Multiplihedra

Definition

A multiplihedron of dimension $n \geq 0$ is a polytope J_{n} whose face lattice is isomorphic to the lattice of 2 -colored trees with $n+1$ leaves.

Multiplihedra

Definition

A multiplihedron of dimension $n \geq 0$ is a polytope J_{n} whose face lattice is isomorphic to the lattice of 2 -colored trees with $n+1$ leaves.

The multiplihedra encode the notion of A_{∞}-morphism between A_{∞}-algebras.

Operadic diagonals of the multiplihedra

Theorem

There are exactly

- two operadic diagonals of the Forcey-Loday multiplihedra, therefore exactly
- two topological cellular operadic bimodule structures (over the Loday associahedra) on the Forcey-Loday multiplihedra, and incidentally exactly
- two compatible universal tensor products of A_{∞}-algebras and A_{∞}-morphisms,
which agree with the Tamari(-type) order on (2-colored) planar trees.

Proof.

Similar to the preceding one.

Conclusion

Thank you for your attention!

