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Cellular diagonals

Let P be a polytope in R”. The diagonal

A : P - PxP
x = (x,x)

is not cellular.
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Permutahedron diagonals

Cellular diagonals

Definition

A cellular diagonal of a polytope P is a continuous map P — P x P such

that

© its image is a union of dim P-faces of P x P (i.e. it is cellular),

@ it agrees with the thin diagonal on the vertices of P, and

@ it is homotopic to the thin diagonal, relative to the image of the

vertices.

(©,1)
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Permutahedron diagonals

Cellular diagonals

@ Simplices: Alexander-Whitney map (1935-38).
@ Cubes: J.-P. Serre's thesis (1951).
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Picture: V. Pilaud.
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Permutahedron diagonals

Cellular diagonals

@ Associahedron: Saneblidze-Umble (2004), Markl-Shnider (2006),
Masuda—Tonks—Thomas—Vallette (2021).

@ Permutahedron: Saneblidze-Umble (2004), L.-A. (2022).
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Permutahedron diagonals

Cellular diagonals

Definition

The polytope of diagonals Dp := ¥(P x P, P) is the fiber polytope of the
projection (x,y) — (x + y)/2.
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Permutahedron diagonals

Cellular diagonals

Definition

The polytope of diagonals Dp := ¥(P x P, P) is the fiber polytope of the
projection (x,y) — (x + y)/2.
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Each vertex of Dp, selected by a vector v in general position wrt P, defines
a cellular diagonal A(p .
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Permutahedron diagonals

Cellular diagonals

e Each cellular diagonal defines a (tight coh.) subdivision,

@ whose dual is obtained by perturbing the normal fan in a generic
direction
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Cellular diagonals

@ This is the Fulton-Sturmfels formula
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Permutahedron diagonals

Cellular diagonals

@ This is the Fulton-Sturmfels formula
THEOREM. For ce A?(X), ¢e AYX), the product cu¢ in AP 4(X) is given by the Minkowski
weight that assigns to a cone y of codimension p + q the value
(cvd)(y) = X my,.~ c(0) ().

The sum is over a certain set of cones 6 and t of codimension p and q that contain y, determined
by the choice of a generic vector vin N: o and T appear when ¢ + v meets 1. The coefficient m}, ,
is the index [N:N, + N.] where N,:= Z(Nn¢) and N.:= Z(Nn71).
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weight that assigns to a cone y of codimension p + q the value
(cvd)(y) = X my,.~ c(0) ().

The sum is over a certain set of cones 6 and t of codimension p and q that contain y, determined
by the choice of a generic vector vin N: o and T appear when ¢ + v meets 1. The coefficient m}, ,
is the index [N:N, + N.] where N,:= Z(Nn¢) and N.:= Z(Nn71).

William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, 1997.
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Permutahedron diagonals

Permutahedron diagonals

Definition

The (n — 1)-dimensional permutahedron Py is the convex hull of the points

(o(1),...,0(n)) eR", 0 €S, .
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Permutahedron diagonals

Permutahedron diagonals

The normal fan of the permutahedron is the braid arrangement

By={xi—x;=0|1<i<j<n}.
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Permutahedron diagonals

Iterated permutahedron diagonals

Definition

For any integers £, n > 1, the (¢, n)-braid arrangement B’ is the
arrangement obtained as the union of ¢ generically translated copies of the
braid arrangement B,,.
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Permutahedron diagonals

Iterated permutahedron diagonals

Definition

For any integers £, n > 1, the (¢, n)-braid arrangement B’ is the
arrangement obtained as the union of ¢ generically translated copies of the
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Enumerative results

The (¢, n)-braid arrangement

We want to study the flat poset of the (¢, n)-braid arrangement 3.

Definition

A flat of an hyperplane arrangement A is a non-empty affine subspace
of RY that can be obtained as the intersection of some hyperplanes of A.
The flat poset of A is poset of flats of A ordered by reverse inclusion.
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Enumerative results

The (¢, n)-braid arrangement

Definition (Partition forest)

A (¢, n)-partition forest (resp. (¢, n)-partition tree) is a (-tuple (F1, ..., Fy)
of set partitions of [n] whose intersection hypergraph is a hyperforest
(resp. hypertree).
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The (¢, n)-braid arrangement

Definition (Partition forest poset)
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Enumerative results

The (¢, n)-braid arrangement

Definition (Partition forest poset)

The (¢, n)-partition forest poset is the set of (¢, n)-partition forest, ordered
by component-wise refinement of partitions.

Proposition

The flat poset of B is isomorphic to the (¢, n)-partition forest poset.
n
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Enumerative results

The (¢, n)-braid arrangement

Definition (Partition forest poset)

The (¢, n)-partition forest poset is the set of (¢, n)-partition forest, ordered
by component-wise refinement of partitions.

Proposition

The flat poset of B is isomorphic to the (¢, n)-partition forest poset.
n

@ Each set partition corresponds to a flat of B,

@ Since the ¢ copies of B, are in generic position, acyclic intersection
hypergraphs correspond to flats of B¢,

© Moreover, refinement of flats is given by componentwise refinement of
partitions.

O]
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Enumerative results

Partition forests and rainbow forests
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Enumerative results

Facets of the diagonal — Vertices of the arrangement

The number of vertices of the (¢, n)-braid arrangement B¢, is

fo(BL) = £((¢ — 1)n+1)"2.
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Enumerative results

Facets of the diagonal — Vertices of the arrangement

The number of vertices of the (¢, n)-braid arrangement B¢, is

fo(BL) = £((¢ — 1)n+1)"2.

Use a colored Priifer code to count (¢, n)-rainbow trees, which are in

bijection with (¢, n)-partition trees. O

n\e[1 2 3 4 5 6 7 8

1 |1 1 1 1 1 1 1 1

2 |1 2 3 4 5 6 7 8

31 8 21 40 65 96 133 176

41 50 243 676 1445 2646 4375 6728

5 |1 432 3993 16384 46305 105456 208537 373248

6 |1 4802 85683 521284 1953125 5541126 13119127 27350408

7 |1 65536 2278125 20614528 102555745 362797056 1029059101 2500000000

8 |1 1062882 72412707 06362500 6457330845 28500625446 06880010407 27AITISTTONR
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Enumerative results

Facets of the diagonal — Vertices of the arrangement

For any ki, ..., ks such that 0 < k; < n—1 for i € [{]

and Zle ki = n — 1, the number of vertices v of the (¢, n)-braid
arrangement B such that the smallest flat of the ith copy of B,
containing v has dimension n — k; — 1 is given by

¢
-1 ”—1> ki—1
n n— k;)% .
() Mo
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Enumerative results

Facets of the diagonal — Vertices of the arrangement

For any ki, ..., ke such that 0 < kj < n—1 fori € [{]

and Zle ki = n — 1, the number of vertices v of the (¢, n)-braid
arrangement B such that the smallest flat of the ith copy of B,
containing v has dimension n — k; — 1 is given by

¢
-1 ”—1> ki—1
n n— k;)% .
() Mo

Use a colored Priifer code to count (¢, n)-rainbow trees with k; nodes
colored by i. OJ
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Enumerative results

Vertices of the diagonal — Regions of the arrangement

The numbers of regions and of bounded regions of the (¢, n)-braid
arrangement B', are given by

fo1(B5) = nl[2"] exp (Z Fff';nm)

m>1

and  by,_1(B) = (n—1)![z" exp ((e —1)>  Fom zm>.

m>1

1
where F&m = m

<€an17) is the Fuss-Catalan number.
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Enumerative results

Vertices of the diagonal — Regions of the arrangement

The number of regions of the (£, n)-braid arrangement B is given by

foe1(BL) = nl [ exp (Z F";'")

m>1

@ use Zaslavsky's theorem (1975), expressing the f-polynomial of the
arrangement in terms of the Mobius function of the flat poset, and
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Enumerative results

Vertices of the diagonal — Regions of the arrangement

The number of regions of the (£, n)-braid arrangement B is given by

foe1(BL) = nl [ exp (Z F";'")

m>1

@ use Zaslavsky's theorem (1975), expressing the f-polynomial of the
arrangement in terms of the Mobius function of the flat poset, and

@ use again the bijection between (¢, n)-partition forests and
(¢, n)-rainbow forests, to

© determine the characteristic polynomial of B¢,

© and conclude using generating functionology.
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Algebraic consequences

Operadic diagonals

Recall that each face Ay|...|Ay of the permutahedron P4, 4.4 |4, -1 IS
isomorphic to the product Pja|_1 X -+ X Pja, |1 of lower dimensional
permutahedra, via the isomorphism

O RIA % ... x RIA«
(Xl, N ,X|A1|) X oo X (X|A1\+~--+|Ak_1|+1> cee ,X|A1|+~~-+|Ak|)
=, RIAw++]Ad]
— (Xo*1(1)7 R aXa*1(|A1|+~~-+|Ak|))
where o is the (|A1], ..., |Ak|)-shuffle sending the increasingly ordered

elements of A; U...U Ak to the block-by-block increasingly ordered
elements of Aq|...|Ak.
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Algebraic consequences

Operadic diagonals

Definition

A diagonal of the permutahedra A is operadic if for every face A;]...|Ak
of the permutahedron P ;.. |4,|-1, the map © induces a topological
cellular isomorphism

A(Al) X ... X A(Ak) = A(A1| 000 ’Ak) 5
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Operadic diagonals

Definition

A diagonal of the permutahedra A is operadic if for every face A;] ... |Axk
of the permutahedron P ;.. |4,|-1, the map © induces a topological
cellular isomorphism

A(Al) X ... X A(Ak) = A(A1| 000 ’Ak) 5

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

@ the one defined in my thesis (2022), and

@ one that recovers the Saneblidze-Umble diagonal (2004) at the
cellular level.
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Algebraic consequences

Operadic diagonals

Let U(n) :={{I,J} | I,J C [n],|I| = J|,INnJ =0}
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Algebraic consequences

Operadic diagonals

Let U(n) :={{I,J} | I,J C [n],|I| = J|,INnJ =0}

Definition
The LA and SU orders on U = {U(n)},>1 are defined by
o LA(n) :={(1,J) | {l,J} € U(n), min(/UJ) =minl}, and by
)

e SU(n):={(/,) | {I,J} € U(n), max(/ U J) = maxJ}.
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Algebraic consequences

Operadic diagonals

Let U(n) :={{I,J} | I,J C [n],|I| = J|,INnJ =0}

Definition

The LA and SU orders on U = {U(n)},>1 are defined by
o LA(n) :={(1,J) | {l,J} € U(n), min(/UJ) =minl}, and by
e SU(n):={(/,) | {I,J} € U(n), max(/ U J) = maxJ}.

Proposition

The two operadic diagonals are given by the family of vectors
vV =(v1,...,v,) which satisfy

Zv,>ZvJ, (1,J) € LA(n) , resp. SU(n) .

iel iel
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Algebraic consequences

Operadic diagonals

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices.

Construct inductively the family of diagonals
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Algebraic consequences

Operadic diagonals

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices.

Construct inductively the family of diagonals
© Only one choice in dimension 0,
@ Only one choice in dimension 1,
© Only one choice in dimension 2,
@ Two choices in dimension 3,

© From dimension 4 on, the operadic property forces one to stick with
one family of vectors.

O]
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Algebraic consequences

Operahedra

Definition

An operahedron of dimension k > 0 is a polytope P; whose face lattice is
isomorphic to the lattice of nestings of a planar tree t with k + 2 vertices.
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Algebraic consequences

Operahedra

Definition

An operahedron of dimension k > 0 is a polytope P; whose face lattice is
isomorphic to the lattice of nestings of a planar tree t with k + 2 vertices.

The operahedra generalize the associahedra and encode the notion of

homotopy operad. 28/33



Algebraic consequences

Operadic diagonals of the operahedra

Definition

An operadic diagonal for the operahedra is a choice of diagonal A; for
each operahedron Py, such that A := {A;} commutes with the map ©.
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Algebraic consequences

Operadic diagonals of the operahedra

Definition
An operadic diagonal for the operahedra is a choice of diagonal A; for
each operahedron Py, such that A := {A;} commutes with the map ©.

There are exactly

@ two operadic diagonals of the Loday operahedra, therefore exactly

@ two colored topological cellular operad structures on the Loday
operahedra, and incidentally exactly

© two universal tensor products of homotopy operads,

which agree with the generalized Tamari order on fully nested trees.
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Algebraic consequences

Operadic diagonals of the operahedra

There are exactly

@ two operadic diagonals of the Loday operahedra, therefore exactly

@ two colored topological cellular operad structures on the Loday
operahedra, and incidentally exactly

© two universal tensor products of homotopy operads,

which agree with the generalized Tamari order on fully nested trees.

To have an operad structure on the operahedra, we need the same choice
of diagonal for each subtree of a given tree. Now suppose one chooses LA
for t and SU for t’. One can then find a bigger tree t” which has both t
and t’ has subtrees, a contradiction. Ol
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Algebraic consequences

Multiplihedra

Definition

A multiplihedron of dimension n > 0 is a polytope J, whose face lattice is
isomorphic to the lattice of 2-colored trees with n + 1 leaves.
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Algebraic consequences

Multiplihedra

Definition

A multiplihedron of dimension n > 0 is a polytope J, whose face lattice is
isomorphic to the lattice of 2-colored trees with n + 1 leaves.

The multiplihedra encode the notion of A,,-morphism between
Aso-algebras.
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Algebraic consequences

Operadic diagonals of the multiplihedra

There are exactly
@ two operadic diagonals of the Forcey—Loday multiplihedra, therefore
exactly
e two topological cellular operadic bimodule structures (over the Loday
associahedra) on the Forcey—Loday multiplihedra, and incidentally
exactly
@ two compatible universal tensor products of A.-algebras and
Aso-morphisms,
which agree with the Tamari(-type) order on (2-colored) planar trees.

Similar to the preceding one. O
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Algebraic consequences

Conclusion

Thank you for your attention!
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