
Permutahedron diagonals
Enumerative results

Algebraic consequences

The combinatorics of the permutahedron diagonals

Guillaume Laplante-Anfossi, joint work with Bérénice
Delcroix-Oger, Matthieu Josuat-Vergès, Vincent Pilaud and

Kurt Stoeckl

The University of Melbourne

Copenhagen–Jerusalem Combinatorics Seminar - May 18th, 2023

1 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Table of contents

1 Permutahedron diagonals

2 Enumerative results

3 Algebraic consequences

2 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Table of contents

1 Permutahedron diagonals

2 Enumerative results

3 Algebraic consequences

3 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Cellular diagonals

Let P be a polytope in Rn. The diagonal

∆ : P → P × P
x 7→ (x , x)

is not cellular.
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Cellular diagonals

Definition

A cellular diagonal of a polytope P is a continuous map P → P × P such
that

1 its image is a union of dimP-faces of P × P (i.e. it is cellular),

2 it agrees with the thin diagonal on the vertices of P, and

3 it is homotopic to the thin diagonal, relative to the image of the
vertices.
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Example

Simplices: Alexander–Whitney map (1935-38).

Cubes: J.-P. Serre’s thesis (1951).

Picture: V. Pilaud.
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Example

Associahedron: Saneblidze–Umble (2004), Markl–Shnider (2006),
Masuda–Tonks–Thomas–Vallette (2021).

Permutahedron: Saneblidze–Umble (2004), L.-A. (2022).
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Cellular diagonals

Definition

The polytope of diagonals DP := Σ(P × P,P) is the fiber polytope of the
projection (x , y) 7→ (x + y)/2.

Each vertex of DP , selected by a vector v⃗ in general position wrt P, defines
a cellular diagonal △(P,v⃗).
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Cellular diagonals

Each cellular diagonal defines a (tight coh.) subdivision,

whose dual is obtained by perturbing the normal fan in a generic
direction

Picture: V. Pilaud
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This is the Fulton–Sturmfels formula

William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, 1997.

10 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Cellular diagonals

This is the Fulton–Sturmfels formula

William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, 1997.

10 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Cellular diagonals

This is the Fulton–Sturmfels formula

William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, 1997.

10 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Permutahedron diagonals

Definition

The (n− 1)-dimensional permutahedron Pn is the convex hull of the points

(σ(1), . . . , σ(n)) ∈ Rn , σ ∈ Sn .
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Permutahedron diagonals

The normal fan of the permutahedron is the braid arrangement

Bn := {xi − xj = 0 | 1 ≤ i < j ≤ n} .
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Iterated permutahedron diagonals

Definition

For any integers ℓ, n ≥ 1, the (ℓ, n)-braid arrangement Bℓ
n is the

arrangement obtained as the union of ℓ generically translated copies of the
braid arrangement Bn.
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The (ℓ, n)-braid arrangement

We want to study the flat poset of the (ℓ, n)-braid arrangement Bℓ
n.

Definition

A flat of an hyperplane arrangement A is a non-empty affine subspace
of Rd that can be obtained as the intersection of some hyperplanes of A.
The flat poset of A is poset of flats of A ordered by reverse inclusion.
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The (ℓ, n)-braid arrangement

Definition (Partition forest)

A (ℓ, n)-partition forest (resp. (ℓ, n)-partition tree) is a ℓ-tuple (F1, . . . ,Fℓ)
of set partitions of [n] whose intersection hypergraph is a hyperforest
(resp. hypertree).
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The (ℓ, n)-braid arrangement

Definition (Partition forest poset)

The (ℓ, n)-partition forest poset is the set of (ℓ, n)-partition forest, ordered
by component-wise refinement of partitions.

Proposition

The flat poset of Bℓ
n is isomorphic to the (ℓ, n)-partition forest poset.

Proof.

1 Each set partition corresponds to a flat of Bn,

2 Since the ℓ copies of Bn are in generic position, acyclic intersection
hypergraphs correspond to flats of Bℓ

n,

3 Moreover, refinement of flats is given by componentwise refinement of
partitions.
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Facets of the diagonal – Vertices of the arrangement

Theorem

The number of vertices of the (ℓ, n)-braid arrangement Bℓ
n is

f0(Bℓ
n) = ℓ

(
(ℓ− 1)n + 1

)n−2
.

Proof.

Use a colored Prüfer code to count (ℓ, n)-rainbow trees, which are in
bijection with (ℓ, n)-partition trees.
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Facets of the diagonal – Vertices of the arrangement

Theorem

For any k1, . . . , kℓ such that 0 ≤ ki ≤ n − 1 for i ∈ [ℓ]
and

∑ℓ
i=1 ki = n − 1, the number of vertices v of the (ℓ, n)-braid

arrangement Bℓ
n such that the smallest flat of the ith copy of Bn

containing v has dimension n − ki − 1 is given by

nℓ−1

(
n − 1

k1, . . . , kℓ

) ℓ∏
i=1

(n − ki )
ki−1.

Proof.

Use a colored Prüfer code to count (ℓ, n)-rainbow trees with ki nodes
colored by i .
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Vertices of the diagonal – Regions of the arrangement

Theorem

The numbers of regions and of bounded regions of the (ℓ, n)-braid
arrangement Bℓ

n are given by

fn−1(Bℓ
n) = n! [zn] exp

(∑
m≥1

Fℓ,m zm

m

)

and bn−1(Bℓ
n) = (n − 1)! [zn−1] exp

(
(ℓ− 1)

∑
m≥1

Fℓ,m zm
)
.

where Fℓ,m :=
1

(ℓ− 1)m + 1

(
ℓm

m

)
is the Fuss-Catalan number.
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Theorem

The number of regions of the (ℓ, n)-braid arrangement Bℓ
n is given by

fn−1(Bℓ
n) = n! [zn] exp

(∑
m≥1

Fℓ,m zm

m

)

Proof.

1 use Zaslavsky’s theorem (1975), expressing the f -polynomial of the
arrangement in terms of the Möbius function of the flat poset, and

2 use again the bijection between (ℓ, n)-partition forests and
(ℓ, n)-rainbow forests, to

3 determine the characteristic polynomial of Bℓ
n,

4 and conclude using generating functionology.
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arrangement in terms of the Möbius function of the flat poset, and

2 use again the bijection between (ℓ, n)-partition forests and
(ℓ, n)-rainbow forests, to

3 determine the characteristic polynomial of Bℓ
n,

4 and conclude using generating functionology.

22 / 33



Permutahedron diagonals
Enumerative results

Algebraic consequences

Vertices of the diagonal – Regions of the arrangement

Theorem

The number of regions of the (ℓ, n)-braid arrangement Bℓ
n is given by

fn−1(Bℓ
n) = n! [zn] exp

(∑
m≥1

Fℓ,m zm

m

)

Proof.

1 use Zaslavsky’s theorem (1975), expressing the f -polynomial of the
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Operadic diagonals

Recall that each face A1| . . . |Ak of the permutahedron P|A1|+···+|Ak |−1 is
isomorphic to the product P|A1|−1 × · · · × P|Ak |−1 of lower dimensional
permutahedra, via the isomorphism

Θ : R|A1| × · · · × R|Ak |

(x1, . . . , x|A1|)× · · · × (x|A1|+···+|Ak−1|+1, . . . , x|A1|+···+|Ak |)

∼=−→ R|A1|+···+|Ak |

7→ (xσ−1(1), . . . , xσ−1(|A1|+···+|Ak |))

where σ is the (|A1|, . . . , |Ak |)-shuffle sending the increasingly ordered
elements of A1 ∪ . . . ∪ Ak to the block-by-block increasingly ordered
elements of A1| . . . |Ak .
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Operadic diagonals

Definition

A diagonal of the permutahedra △ is operadic if for every face A1| . . . |Ak

of the permutahedron P|A1|+···+|Ak |−1, the map Θ induces a topological
cellular isomorphism

△(A1)× . . .×△(Ak) ∼= △(A1| . . . |Ak) .

Theorem

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

1 the one defined in my thesis (2022), and

2 one that recovers the Saneblidze–Umble diagonal (2004) at the
cellular level.
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Operadic diagonals

Let U(n) := {{I , J} | I , J ⊂ [n], |I | = |J|, I ∩ J = ∅}.

Definition

The LA and SU orders on U = {U(n)}n≥1 are defined by

LA(n) := {(I , J) | {I , J} ∈ U(n), min(I ∪ J) = min I}, and by

SU(n) := {(I , J) | {I , J} ∈ U(n), max(I ∪ J) = max J}.

Proposition

The two operadic diagonals are given by the family of vectors
v⃗ = (v1, . . . , vn) which satisfy∑

i∈I
vi >

∑
i∈J

vj , ∀(I , J) ∈ LA(n) , resp. SU(n) .
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Operadic diagonals

Theorem

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices.

Proof.

Construct inductively the family of diagonals

1 Only one choice in dimension 0,

2 Only one choice in dimension 1,

3 Only one choice in dimension 2,

4 Two choices in dimension 3,

5 From dimension 4 on, the operadic property forces one to stick with
one family of vectors.
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Operahedra

Definition

An operahedron of dimension k ≥ 0 is a polytope Pt whose face lattice is
isomorphic to the lattice of nestings of a planar tree t with k + 2 vertices.

The operahedra generalize the associahedra and encode the notion of
homotopy operad.
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Operadic diagonals of the operahedra

Definition

An operadic diagonal for the operahedra is a choice of diagonal △t for
each operahedron Pt , such that △ := {△t} commutes with the map Θ.

Theorem

There are exactly

1 two operadic diagonals of the Loday operahedra, therefore exactly

2 two colored topological cellular operad structures on the Loday
operahedra, and incidentally exactly

3 two universal tensor products of homotopy operads,

which agree with the generalized Tamari order on fully nested trees.
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Operadic diagonals of the operahedra

Theorem

There are exactly

1 two operadic diagonals of the Loday operahedra, therefore exactly

2 two colored topological cellular operad structures on the Loday
operahedra, and incidentally exactly

3 two universal tensor products of homotopy operads,

which agree with the generalized Tamari order on fully nested trees.

Proof.

To have an operad structure on the operahedra, we need the same choice
of diagonal for each subtree of a given tree. Now suppose one chooses LA
for t and SU for t ′. One can then find a bigger tree t ′′ which has both t
and t ′ has subtrees, a contradiction.
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Multiplihedra

Definition

A multiplihedron of dimension n ≥ 0 is a polytope Jn whose face lattice is
isomorphic to the lattice of 2-colored trees with n + 1 leaves.

The multiplihedra encode the notion of A∞-morphism between
A∞-algebras.
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Operadic diagonals of the multiplihedra

Theorem

There are exactly

two operadic diagonals of the Forcey–Loday multiplihedra, therefore
exactly

two topological cellular operadic bimodule structures (over the Loday
associahedra) on the Forcey–Loday multiplihedra, and incidentally
exactly

two compatible universal tensor products of A∞-algebras and
A∞-morphisms,

which agree with the Tamari(-type) order on (2-colored) planar trees.

Proof.

Similar to the preceding one.
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Conclusion

Thank you for your attention!
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